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a b s t r a c t

The kinetics of reversible energy transfer from photo-excited donors to energy acceptors is studied at
arbitrary concentrations of both and any relationship between the decay-times of the reactants. The
backward reaction of transfer products in a bulk is included in the consideration. Its contribution to
delayed fluorescence, resulting from the energy conservation on the long-lived acceptors, is specified.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The reversible energy transfer from the excited donor D� to the
energy acceptors is given by the simplest reaction scheme

D� þ A �
WF

WB

D þ A�;

# sD # sA

ð1:1Þ

where sA and sB are the life-times of excited reactants. The transfer
reactions in diluted solutions is the usual subject of the Encounter
Theory that enables specifying the reaction kinetics and the quan-
tum yields of the luminescence and transfer products.

The input data are the forward and backward transfer rates, WF

and WB, as well as encounter diffusion coefficient D. For a forward
dipole–dipole energy transfer the position dependent rate is given
by the Förster formula [1]:

WFðrÞ ¼
a
r6 : ð1:2Þ

It decreases as a power of distance r between the donor and accep-
tor of energy. If the transfer is performed by the exchange interac-
tion of Dexter type then [2]

WFðrÞ ¼W0 exp � r � r
L

� �
ð1:3Þ

where r is a contact distance and L is the characteristic transfer
length. In line with the true space dependent rates, there is also
the popular contact approximation for them:

WFðrÞ ¼ kf dðr � rÞ where kf ¼
Z 1

0
WFðrÞ4pr2dr ð1:4Þ

For the short range interaction it is obtained from the last expres-
sion by the limiting transition

L! 0; W0 !1; while kf ¼ const:

This approximation is not applicable to static quenching, but is very
often used (from Smoluchowski times) for a description of contact
diffusional quenching.

The kinetic scheme for reversible inter-molecular transfer (1.1),
includes the backward rate WB that relates to a forward one, via
equilibrium constant c:

WF

WB
¼ kf

kb
¼ 1

c
¼ expð�DG=TÞ; ð1:5Þ

where DG is the difference between the free energy of the products
and initial reactant states (the Boltzmann constant kB is set to 1).

The irreversible analog of this process, performing the quench-
ing of initial excitation at WB ¼ 0 is perfectly described by means
of differential encounter theory (DET) [3]. In solid solutions (in ab-
sence of encounter diffusion) the ‘‘static quenching” kinetics ob-
tained with DET reproduces the exact multi-particle solution of
the problem which is valid at any acceptor concentration c ¼ ½A�.
However, DET can do nothing with a reversible transfer when
WB – 0 and the backward process plays an important role in en-
ergy quenching or conservation.

On the contrary, the relatively new integral encounter theory
(IET) describes the reversible transfer reactions as well as irrevers-
ible ones but only in the lowest order concentration approximation
(with respect to c) [4,5]. As a result, IET is inapplicable to the long
time quenching which is a multi-particle one, although it allows to
describe reasonably (in the lowest concentration approximation)
the preceding diffusion–accelerated reaction. More accurate
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description of the latter is given by the modified encounter theory
(MET) [6,7]. Taking more consistently all the binary terms, MET
corrects the kernel of IET, improving the kinetics of diffusion accel-
erated process and avoiding the false long time behavior of IET.
Using both theories which are identical in static stage, we will indi-
cate the diffusion–accelerated one, where they become different,
giving preference to MET.

In the next section, we will present the formalism of both the-
ories, MET and IET, using the position dependent rates of dipole–
dipole and ‘‘exchange” energy transfer, which are the alternatives
to the contact one studied earlier [8–10]. They will be used to
study the decay of donor excited state population, N�ðtÞ, as well
as the quantum yield of fluorescence quenching:

g ¼
Z 1

0
N�ðtÞdt=sD ¼ eN�ð0Þ=sD: ð1:6Þ

In Section 3 we will consider the static quenching and then turn
to the diffusion–accelerated one (Section 4). The kinetics of the
reversible energy transfer, immediately following the d-pulse exci-
tation, will be analyzed at different ratio of forward and backward
rates and the arbitrary relationship of excitation life-times. Then
the same will be done in a long run taking into account the subse-
quent backward reaction in the bulk, proportional to the donor
concentration q ¼ ½D�. The latter results in equilibration of the ex-
cited states whose final decay is the same in both theories. Their
analysis and comparison is performed with a numerical program
developed in Ref. [11] and the results are summarized in Section 5.

2. Integral encounter theories of energy transfer

Owing to a request for a detailed balance (1.5), the kernels of IET
equations for inter-molecular energy transfer (see Eq. (3.14) in re-
view [4]) relate to each other as SðtÞ ¼ cRðtÞ [12]. This relationship
allows representing these equations in the following form:

_N�ðtÞ ¼ �c
Z t

0
dsRðsÞN�ðt � sÞ þ cq

�
Z t

0
dsRðsÞN�Aðt � sÞ � N�ðtÞ

sD
ð2:1Þ

_N�AðtÞ ¼ c
Z t

0
dsRðsÞN�ðt � sÞ � cq

�
Z t

0
dsRðsÞN�Aðt � sÞ � N�AðtÞ

sA
; ð2:2Þ

where N�ðtÞ ¼ ½D��t=½D
��0 and N�AðtÞ ¼ ½A

��t=½D
��0 – the survival prob-

abilities for the time t of excited donors and acceptors in the bulk.
Such equations have been already used, employing the contact
approximation: Eq. (3.127) in the same review [4]. Extending them
to a distant transfer, we preserve the original IET definition of the
kernel

eRðsÞ ¼ sþ 1
sD

� �Z
½WFðrÞ~mðr; sÞ �WBðrÞ~lðr; sÞ�d3r; ð2:3Þ

via position dependent rates and the pair correlation functions. The
latter obey the set of auxiliary equations:

_mðr; tÞ ¼ �WFðrÞmþWBðrÞlþ DDm� m
sD
;

mðr;0Þ ¼ 1;
@m
@r

����
r¼r
¼ 0 ð2:4Þ

_lðr; tÞ ¼WFðrÞm�WBðrÞlþ DDl� l
sA
;

lðr;0Þ ¼ 0;
@l
@r

����
r¼r
¼ 0 ð2:5Þ

Here we imply for simplicity that the diffusion coefficients for the
forward and backward reactions are the same and there is no in-
ter–particle interaction.

The equations for modified encounter theory (MET) are almost
the same, except the kernel:

_N�ðtÞ ¼ �c
Z t

0
dsRmðsÞN�ðt � sÞ

þ cq
Z t

0
dsRmðsÞN�Aðt � sÞ � N�ðtÞ

sD
ð2:6Þ

_N�AðtÞ ¼ c
Z t

0
dsRmðsÞN�ðt � sÞ

� cq
Z t

0
dsRmðsÞN�Aðt � sÞ � N�AðtÞ

sA
; ð2:7Þ

The modified kernel of the integral MET equations has the following
definition

eRmðsÞ ¼ sþ 1
sD
þ ceRð0Þ� � Z

½WFðrÞ~mmðr; sÞ �WBðrÞ~lmðr; sÞ�d3r;

ð2:8Þ

via the position dependent rates and the pair correlation functions.
The latter obey the set of auxiliary equations:

_mmðr; tÞ ¼ �WFðrÞmm þWBðrÞlm þ DDmm � s�1
D þ ceRð0Þh i

mm; ð2:9Þ

_lmðr; tÞ ¼WFðrÞmm �WBðrÞlm þ DDlm � s�1
A þ cqeRð0Þh i

lm;

ð2:10Þ

where the initial and boundary conditions remain the same as in IET
(see Eqs. (2.4) and (2.5)). These results follow from the general ma-
trix formulation of MET [13,14]. They make the applicability of the
so modified integral theory to a higher acceptor concentration than
IET. The difference between them indicates the scale of corrections
at any time, giving preference to MET where they are large.

Making the Laplace transformation of Eqs. (2.1) and (2.2) or
(2.6) and (2.7), one can resolve them relative to eN�ðsÞ and eN�AðsÞ,
getting the following results:

eN�ðsÞ ¼ 1

sþ s�1
D þ eRðsÞ ; eN�AðsÞ ¼ eRðsÞ

sþ s�1
A

	 

sþ s�1

D þ eRðsÞ� � ;
ð2:11Þ

where the ‘‘mass operator” can be defined through the kernels eRðsÞ
(or eRmðsÞ) of the corresponding integral equations in the following
way:

eRðsÞ ¼ ceRðsÞ
1þ cqeRðsÞ= sþ s�1

A

	 
 ð2:12Þ

Note that the numerator of this expression represents the initial
stage of the reaction (geminate stage) following the light excitation.
It corresponds to the first terms in the rhs of Eqs. (2.1) and (2.2) and
(2.6) and (2.7) while the term in the denominator takes into account
the subsequent reaction in the bulk represented by the second
terms of the same equations.

3. Static quenching

Let us turn to the solid or highly viscous solutions, where diffu-
sion is frozen ðD ¼ 0Þ. Generally speaking, IET is not applicable to
such systems because the transfer there is essentially multi-parti-
cle (to all partners simultaneously), while IET is only the lowest
order (binary) approximation with respect to the partner concen-
tration c, reproducing only the short time kinetics of irreversible
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