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a b s t r a c t

We present non equilibrium molecular dynamics experiments of the unfolding and refolding of a single
molecule alanine decapeptide in vacuo subject to a Nosé thermostat. Forward (unfolding) and reverse
(refolding) work distribution are numerically calculated for various duration times of the non equilibrium
experiments. Crooks theorem is accurately verified for all non equilibrium regimes and the time asym-
metry of the process is measured using the recently proposed Jensen–Shannon divergence [E.H. Feng,
G. Crooks, Phys. Rev. Lett. 101, 090602 (2008)]. Results on the alanine decapeptide are found similar to
recent experimental data on m-RNA molecule in solution, thus evidencing the universal character of
the Jensen–Shannon divergence. The patent non Markovianity of the process is rationalized by assuming
that the observed forward and reverse distributions can be each described by a combination of two nor-
mal distributions satisfying the Crooks theorem, representative of two mutually exclusive linear events.
Such bimodal approach reproduces with surprising accuracy the observed non Markovian work
distributions.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Some time ago Crooks [1] derived, in the context of Monte Carlo
simulations, an exact formula involving the dissipative work of a
system driven out of equilibrium through a time dependent exter-
nal potential and in contact with a thermal bath at temperature
T = 1/kBb. This formula, ever since known as the Crooks theorem
(CT), reads:

Pðx;KÞ
Pðx̂; bKÞ ¼ ebðW�DFÞ ð1Þ

where Pðx; KÞ; Pðx̂; bKÞ are the probabilities of observing a forward
trajectory x, giving the time schedule (or protocol) K, and of observ-
ing its conjugate trajectory x̂ with inverted transformation protocolbK, respectively; DF � FB � FA is the free energy difference between
the initial and final canonical ensembles and W is the work done
in the forward driven non equilibrium experiment. The Crooks for-
mula has been later recognized of much broader validity, and it
was shown to hold for deterministic systems in the context classical
molecular dynamics simulations [2–5], Langevin dynamics [6,7],
quantum systems [8,9] and verified in real [10] and computer
[11,3,12] experiments.

The essential points for Eq. (1) to hold is that the driven forward
and reverse experiments ought to be started from equilibrium dis-
tributions and that the transformation protocols of the forward and
reverse process (that can involve mechanical and thermodynamic
variables [5] as well) must be related by a time-reversal transfor-
mation. As the work done in the non equilibrium trajectory inverts
sign by time-reversal, the trajectories and their time-reversal
counterpart can be labeled using the work such that Eq. (1) can
be also written as:

PðWjFÞ
Pð�WjRÞ ¼ ebðW�DFÞ ð2Þ

where P(WjF), P(�WjR) are the probability of observing a work W in
the forward and reverse experiment. Eq. (2) says that trajectories
that are highly dissipative (i.e. W � DF� 0) in the forward sense
are difficult to observe in the reverse sense since for such trajecto-
ries the dissipation of its time-reversal counterpart would be nega-
tive, thus transiently violating the second law. In the functional
form of Eq. (2), the Crooks theorems applies, with some provisions
[13] related to the form of the external driving agent, to the con-
trolled mechanical manipulation of a single molecule through opti-
cal tweezers [10] or atomic force microscopy [14]. We conclude this
introductory remarks by stating that Eq. (2), one of the very few
exact equations in non equilibrium thermodynamics, holds for any
regime: for instantaneous pulling we have that W = HB � HA and,
by averaging over all trajectories, one recovers the Zwanzig [15]
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formula< e�bðHB�HAÞ>A ¼ ebDF . For infinitely slow pulling, i.e. for qua-
si-static reversible transformations, W = DF and the forward and
backward distribution are indistinguishable and P(WjF) = P(�WjR) =
d(W � DF).

Recently there has been considerable progress in the interpreta-
tion of non equilibrium experiments coming both from measure-
ments on single molecules using AFM or optical traps [16] and
from deterministic or stochastic simulations [17]. Feng and Crooks
proposed to use the Jensen–Shannon divergence [18,19] (JSD) be-
tween the probability of a trajectory and its time-reversal conju-
gate as a definition and a measure of the time asymmetry in a
thermodynamic system. If we use the work W (which changes sign
by time-reversal) as a label for trajectories, then the JSD can be
written in terms of work distributions as:

JSD ¼ 1
2

Z
PðWjFÞ ln 2PðWjFÞ

PðWjFÞ þ Pð�WjRÞdW

þ 1
2

Z
Pð�WjRÞ ln 2Pð�WjRÞ

PðWjFÞ þ Pð�WjRÞdW ð3Þ

The JSD can be shown [16] to be equal to the average gain of infor-
mation about the orientation of time’s arrow from one single reali-
zation of the experiment. This quantity, plotted against the average
dissipation obtained in the forward and reverse driven experiments,
goes to zero for reversible processes, and to one full nats of informa-
tion ln 2 (i.e. 1 bit) when the two distributions do not overlap (i.e.
for large average dissipation). In this latter case, it is easy to assign
an observed trajectory (taken from the pool of forward and reverse
non equilibrium experiments) to one of two distributions, or, stated
in other words, it is easy to guess, from the analysis of one single
random trajectory, in which direction the time is flowing. On such
basis, when plotted against the average mean dissipation, the JSD
may then give indication on the energetic cost (i.e. the dissipation
needed) to ensure that a molecular process (e.g. a molecular motor)
advances in time. For Markovian (linear) systems, the work distri-
butions are always Gaussian [11,3] with variance twice the average
dissipation. In this case, JSD vs dissipation is analytic and identical
for all Markovian system. Therefore, Eq. (3) can also be used as a
measure of the non linearity of the system.

In the context of non equilibrium thermodynamics, similar con-
cepts were put forward recently by Kawai et al. [17] These authors
interestingly restated the CT, Eq. (2), in the form

< W > �DF ¼ kBT
Z

dWPðWjFÞ log
PðW jFÞ

Pð�WjRÞ

� �
ð4Þ

¼ kBTD½PðWjFÞjPð�W jRÞ� ð5Þ

The integral in Eq. (4) defines D[P(WjF)jP(�WjR)], the Kullback–Lei-
bler divergence (KLD), [19] a strictly positive quantity measuring, in
information theory, the expected extra message-length per datum
that must be communicated if a code that is optimal for a given
(wrong) distribution P(�WjR) is used, compared to using a code
based on the (true) distribution P(WjF). In general the KLD is not
symmetric, i.e. if q, p are two non identical distributions,
D(pjq) – D(qjp). For Markovian systems, however, the KLD is always
symmetric. Moreover, for such systems, kBT times the KLD can be
calculated analytically yielding the dissipation br2/2, with r2 being
the variance of the Gaussian distribution. KLD between the forward
and reverse distributions has the same characteristics of the JSD
divergence, being the former like the latter both a measure of the
time asymmetry (i.e. of the possibility for distinguish in which
sense the time is flowing) and of non linearity. However KLD, as
suggested by Kawai et al., could be effectively used as a tool for
obtaining a better upper bound of the free energy than the average
work W. This is so since, according to the chain rule, [19] the rela-
tive entropy (or KLD) decreases upon coarse graining. An extremely
simple scheme could be that of approximating coarse grain histo-

grams of the forward and backward work distribution with the best
linear model satisfying the Crooks theorem. This approach has been
advocated recently by Forney et al. [20] in the context of steered
molecular dynamics of alanine decapeptide in vacuo along the
end-to-end distance. These authors, in their so-called FR method
[21,20], produce a coarse grain histogram with few work measure-
ments in both directions that are then fitted using a linear (Markov-
ian) model, retrieving the free energy difference between initial and
final states and the dissipation of the system. However, when the
driven coordinates exhibit clear non linear effects (i.e. the noise
due to all other ‘‘solvent” coordinates is not white or Gaussian), as
is the case of folding and refolding of small proteins along the
end-to-end distance, then other less simplistic coarse grain schemes
could and should be adopted.

In this paper we further develop the concepts of time asymme-
try and coarse graining introduced in Refs. [17,16] by presenting
extensive non equilibrium molecular dynamics simulation data
of unfolding and refolding process of alanine decapeptide in vacuo
performed with the deterministic Nosé–Hoover thermostat at
300 K. In spite of the fact that alanine decapeptide in vacuo has
been extensively studied in the recent past by non equilibrium
computational techniques [11,3,20], the rationalization and inter-
pretation of the observed data is still a matter of debate. a-helix
formation/disruption is also important per se and as a paradigm
for an elementary folding/unfolding process.

Our results on alanine decapeptide are interpreted by means of
the JSD and KLD quantities above introduced. We further present a
simple coarse grain and totally general model satisfying the CT
based on the assumption of the occurrence, in the refolding pro-
cess, of two mutually exclusive events. Such a simple dual model
explains many features of the observed work distributions and
can be rationalized with the existence of two competing minima
for low values of the end-to-end distance in alanine decapeptide,
i.e. one of enthalpic nature (the helix), easily accessible, in the
refolding process, at low dissipation regimes, and the other of
entropic origin corresponding to a manifold or misfolded coil
structures which emerges at large dissipation when trying to rap-
idly refold alanine decapeptide from extended structures. This
view appears to be quite general and is fully consistent with the
rugged funnel picture of the folding process, in the sense that
escaping the rugged funnel from below is a much tamer process
than reentering the funnel from above.

The present paper is organized as follows. Section 2 is dedicated
to the description of the systems and of the methods used in the
non equilibrium simulations. In Section 3 we present the computer
experiment results of the unfolding/refolding of a single molecule
of alanine decapeptide along with a discussion focusing on the
thermodynamic and microscopic aspects of the process. Conclusive
remarks and futures perspective regarding the applicability of the
presented methodology to real experiments are presented in
Section 4.

2. Methods

In this section we provide the technical details on the steered
molecular dynamics simulations of the alanine decapeptide (A10)
in vacuo. The unperturbed system is described with the all-atom
force field CHARMM whose parameters are given in Ref. [22]. A
constant temperature of 300 K is imposed through a Nosé–Hoover
thermostat [23]. The resulting deterministic equations of motions
are efficiently integrated using a reference system propagator algo-
rithm [24] at three time steps, 3.0 fs for medium and long range
non-bonded interactions (no cut-off is imposed), 1.5 fs for torsional
potential involving hydrogen atoms and for short-ranged (14)
non-bonded interactions, and 0.5 fs for stretching and bending
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