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a b s t r a c t

We discuss a resolution of the Coulomb operator, r�1
12 ¼ j/iih/ij, into a one-particle basis. We show that

the Laguerre polynomials generate a resolution with attractive computational properties and we apply
it to the calculation of Coulomb and exchange energies in hydrogenic ions, the H2 molecule, and the
Be atom. Rapid convergence is observed in all cases and a theoretical reason for this is discussed.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The most troublesome terms in the non-relativistic Schrödinger
Hamiltonians for atomic and molecular systems are the two-
electron Coulomb operators r�1

ij . They are responsible for almost
all of the difficulties that confront chemical physicists who seek
to understand molecular electronic structure and the reason is
simple: it is these terms that are responsible for the coupling of
the electrons’ motions and which thereby create many-body
effects. Life would be much simpler – although life would almost
certainly cease to exist – if these terms were removed.

Of course, we are not at liberty simply to drop such terms from
our Hamiltonians, but one can ask whether they may be recast into
a form that will facilitate both understanding and computation.
This is the goal of the present paper and, in particular, we will
examine the operator resolution

r�1
12 ¼ j/kih/kj ð1Þ

(summation convention implied) and the associated function
expansion

r�1
12 ¼

X1
k

/kðr1Þ/kðr2Þ ð2Þ

which express the Coulomb operator as an infinite sum of binary
products of one-electron operators.

A corollary of such a resolution is that we can write

hajr�1
12 jbi ¼ haj/kih/kjbi ð3Þ

and thus reduce two-electron integrals to sums of products of over-
lap integrals. This expansion is exact but, if the sum over k is trun-
cated after a finite number of terms, it becomes reminiscent of the
low-rank Cholesky [1–3] and Kronecker [4] approximations that are
gaining popularity in quantum chemistry. An advantage of our
method over other density fitting procedures such as resolution of
the identity [5–8] and Poisson fitting [9,10] is that we do not need
to compute and manipulate the metric matrix that arises from the
interactions between the auxiliary basis functions.

In the early 19th century, a partial resolution was achieved by
combining the Legendre expansion with the Addition Theorem
for spherical harmonics to find

r�1
12 ¼ r2

1 þ r2
2 � 2r1r2 cos c

� ��1=2 ¼
X1
l¼0

rl
<

rlþ1
>

Plðcos cÞ

¼ 4p
2lþ 1

X1
l¼0

Xl

m¼�l

rl
<

rlþ1
>

Ylmðr1ÞYlmðr2Þ ð4Þ
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where c is the angle between r1 and r2, and YlmðrÞ is a spherical har-
monic [11] of the angular part of r. However, although this venera-
ble expansion is very useful, it resolves r�1

12 into functions of r< and
r> (the lesser and greater of r1 and r2), rather than r1 and r2

themselves.
A decade ago, we observed [12] that another partial resolution

can be achieved if the long-range part of the Ewald partition [13]

r�1
12 ¼

erfcðxr12Þ
r12

þ erfðxr12Þ
r12

ð5Þ

is expanded in series to yield

erfðxr12Þ
r12

¼ 2xffiffiffiffi
p
p

X1
k¼0

ð�x2Þk

k!ð2kþ 1Þ r2
1 þ r2

2 � 2r1 � r2
� �k ð6Þ

However, such an expansion is not fully satisfactory because it in-
cludes off-diagonal terms and, of course, because the short-range
part remains unresolved. A similar partial resolution underpins
the KWIK treatment [14–16] of the Coulomb operator.

In a recent communication [17], however, we have presented a
more complete solution to the problem, showing that, given a com-
plete set of functions ffkðrÞg with the Coulomb-orthonormality
property

hfijr�1
12 jfji ¼ dij ð7Þ

one obtains the Coulomb resolution (1) by choosing the /kðrÞ to be
the Coulomb potentials of the fkðrÞ.

We also showed that the functions

fnlmðrÞ ¼
YlmðrÞ
p
ffiffiffi
2
p

Z 1

0
x2hnðxÞjlðxrÞdx ð8Þ

are complete and Coulomb-orthonormal, if the jl are spherical Bes-
sel functions [11] and fhng is a set of functions that are complete
and orthonormal on ½0;1Þ. Moreover, the Coulomb potential of
fnlmðrÞ is

/nlmðrÞ ¼ 2
ffiffiffi
2
p

VnlðrÞYlmðrÞ ð9Þ

where the radial potentials are defined by

VnlðrÞ ¼
Z 1

0
hnðxÞjlðxrÞdx ð10Þ

and comparison with (4) then reveals that

4lþ 2
p

X1
n¼0

Vnlðr1ÞVnlðr2Þ ¼
rl
<

rlþ1
>

ð11Þ

There is an infinite variety of generators hnðxÞ and each yields a
valid Coulomb resolution (1). In principle, any one of these can be
chosen but, in practice, the choice is guided by computational con-
siderations. In [17], we chose the discrete Hermite generator

hnðxÞ ¼
ð2=pÞ1=4

2n ffiffiffiffiffiffiffiffiffiffiffi
ð2nÞ!

p H2n
xffiffiffi
2
p
� �

exp � x2

4

� �
ð12Þ

but this leads to radial potentials that are numerically difficult. Con-
tinuous generators are also possible, for example the Dirac genera-
tor is

hnðxÞ ¼ dðx� nÞ ð13Þ

where the index n runs over all positive real numbers. The poten-
tials (10) from this generator are simply the spherical Bessel
functions

VnlðrÞ ¼ jlðnrÞ ð14Þ

and the resulting Coulomb resolution is therefore

r�1
12 ¼ 8

Z 1

0

X
lm

jlðnr1ÞYlmðr1Þjlðnr2ÞYlmðr2Þdn ð15Þ

This is elegant but it requires an integration, rather than a sum, over
n and is therefore less convenient from a computational point of
view. In the present paper, we consider an alternative generator
based on the Laguerre polynomials and show that this has several
computational advantages. We use atomic units throughout.

2. The Laguerre generator

We define the Laguerre generator to be

hnðxÞ ¼
ffiffiffi
2
p

Lnð2xÞ expð�xÞ ð16Þ

(n ¼ 0;1;2; . . .) which provides a complete orthonormal set on
½0;1Þ.

By using the integral representation [11]

jlðzÞ ¼
ð�iÞl

2

Z 1

�1
expðiztÞPlðtÞdt ð17Þ

(where Pl is a Legendre polynomial), the radial potential (10) can be
recast as

VnlðrÞ ¼
ffiffiffi
2
p
ð�iÞl z

2

Z 1

�1

ð�z� tÞn

ðz� tÞnþ1 PlðtÞdt ð18Þ

where z ¼ ðirÞ�1. Each potential is a finite sum of elementary
functions.

The l ¼ 0 potentials are given by

Vn0ðrÞ ¼
ffiffiffi
2
p h

r
1þ

Xn

k¼1

ð�1Þk sin 2kh
kh

" #
ð19Þ

where h ¼ tan�1 r. Eq. (19) provides a simple and stable recursive
scheme for computing the Vn0ðrÞ and Fig. 1 illustrates low-order
examples of these.

The n ¼ 0 potentials are given by

V0lðrÞ ¼
ffiffiffi
2
p

ilði=rÞQ 0
l ði=rÞ ð20Þ

where Qk
l is an associated Legendre function of the second kind [11].

These potentials are everywhere non-negative and Fig. 2 illustrates
low-order examples of these.

The Laguerre generators (16) and spherical Bessel functions
(17) possess the recursive properties [11]Z
½hnþ1ðxÞ þ hnðxÞ�dx ¼ hnðxÞ � hnþ1ðxÞ ð21Þ

ð2lþ 1Þ d
dz

jlðzÞ ¼ ljl�1ðzÞ � ðlþ 1Þjlþ1ðzÞ ð22Þ

and integration by parts of (10) therefore gives

π
4

π
2

θ

1

Fig. 1. ð�1ÞnVn0ðrÞ for n ¼ 0;1;2;3;4. (r � tan h).
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