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a b s t r a c t

The matrix elements of the quasirelativistic Douglas–Kroll operators up to the fourth order for hydrogen-
like ions is constructed with as few additional approximations as possible, to investigate the behaviour of
its 1s eigenfunctions in the vicinity of the nucleus. Because Douglas–Kroll is a momentum space theory,
we use a basis set of spherical waves which are eigenfuntions of the square of the momentum operator.
While this avoids the most serious approximation of the standard Douglas–Kroll–Hess protocol, namely
that the basis functions used to construct the Douglas–Kroll operator are eigenfunctions of the (squared)
momentum operator, it also makes the convergence of this expansion very slow, because spherical waves
are not well suited to represent the (weak) singularities of the eigenfunctions at the position of the point-
like nucleus. On the other hand, the convergence is quite monotonic, and information on the behaviour
close to the nucleus can be extracted from the convergence rate. Starting with the second-order, the
eigenfunctions of the Douglas–Kroll operator are not ‘‘more singular” than the Dirac eigenfunctions,
and the occurence of an additional error when using regular basis sets, as postulated in the literature,
can not be observed. The resolution of the identity, which is involved in any practical approach to con-
struct the matrix elements of the Douglas–Kroll operators beyond the first order, is a minor problem
for heavy nuclei.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

For a long time, relativistic quantum chemistry has been dom-
inated by the so-called quasirelativistic methos. In these methods,
the charge conjugation degrees of freedom are removed from the
Dirac equation, thus giving birth to a theory ‘‘for electrons only”
[1]. Because the negative-energy branch of the Dirac spectrum is
removed, quasirelativistic operators are (mostly) variationally sta-
ble, and for many applications the reduced complexity from four to
two components leads to a reduction of the computational effort,
although the implementation of two-component methods is often
more complicated than in the so-called ‘‘fully relativistic”, that is,
four-component case. Another attractive feature of quasirelativis-
tic methods is that they generate a separation into scalar-relativis-
tic and spin–orbit effects, which is very useful to rationalize trends
of relativistic effects across the periodic table of the elements. Note
that such a separation is not unique [2], but different for each
quasirelativistic method. For a qualitative discussion of trends this
seems not to be a problem, but for close comparisons of different
quasirelativistic methods it has been observed that for scalar-rela-
tivistic results the differences are somewhat larger than if the
results including spin–orbit coupling are compared [3].

The majority of quantum chemical software uses a basis set
expansion for the atomic or molecular orbitals. Only the matrix
elements of the quasirelativistic operator with the basis functions

enter such a calculation, and it is largely immaterial how they are
generated. While the traditional approach, at least in principle,
starts from the construction of a quasirelativstic operator, an
alternative approach starts from the matrix elements of the Dirac
operator and generates matrix element of a not fully specified
quasirelativistic operator at matrix level, that is, within the finite
dimensional framework established by the matrix representation
of the Dirac operator. This approach somewhat lingered around
in the literature [4–7] and has recently more explicitly been
advocated by Kutzelnigg and Liu [8,9]. Likewise, the Douglas–Kroll
approach [10–12], which has originally been formulated as a the-
ory for a quasirelativistic operator, has also been used to generate
exact quasirelativistic theories at matrix level[13–15].

These theories are more or less equivalent since they start from
the Dirac operator projected onto a finite-dimensional subspace
which is defined by the basis set used to expand the large compo-
nents and the restricted kinetic balance condition. For this finite-
dimensional operator, the spectral representation is easily accessi-
ble via a matrix diagonalization. This diagonalization is either per-
formed explicitly (in the one-step procedures) or iteratively.
Whether this make theories using quasirelativistic operators obso-
lete, as sometimes claimed [9], remains to be seen. An argument
central to this verdict is that eigenfunctions of approximate quasi-
relativistic operators are ‘‘more singular” than the Dirac solutions,
and that even if an exact quasirelativistic operator were readily
available additional errors (not present in a four-component for-
malism) will occur if it is used with regular basis functions [16].
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In this line of argument, the success of the Douglas–Kroll method is
explained as a consequence of the fact that all known implementa-
tions so far are based on matrix operations, and that the Douglas–
Kroll transformation at operator level gives quasirelativistic
operators which are much more unpleasant than usually believed
[16].

There are only few analytical results on the properties of Doug-
las–Kroll operators. Hardekopf and Sucher have found that the
eigenfunctions of the first-order Douglas–Kroll (DK1) operator
are more singular than the Dirac eigenfunctions [17], such that this
operator has no solutions for point-like nuclei with Z > 124 in con-
trast to the Dirac equation, which has solutions up to Z ¼ 137.
More recently, Brummelhuis et al. [18] have proven that the sec-
ond-order Douglas–Kroll operator (DK2) does have solutions up
to Z ¼ 137. No analytical results are available beyond DK2.

Within a given finite basis set, numerical high-order Douglas–
Kroll results can match the Dirac values (in that basis set) to any
desired accuracy [19,20], but this may not give information about
the ‘‘true” spectrum of the Douglas–Kroll operators. The present
author has recently given Douglas–Kroll results up to the sixth or-
der [21] obtained with a very large Gaussian basis set and claimed
that these results match the eigenvalues to microhartree accuracy.
From this data, it has been extracted that the leading error of the
6th order Douglas–Kroll (DK6) 1s eigenvalue for hydrogen-like ions
is OðZ10c�8Þ, (Z is the nuclear charge, and c the speed of light) in
contrast to the claim [16] that only the leading relativistic correc-
tion OðZ4c�2Þ can be correct if one uses quasirelativistic operators.
This discrepancy calls for clarification. To do so, the Douglas–Kroll
method was implemented for a basis set of spherical waves, which
removes the most critical approximation underlying all Douglas–
Kroll implementations reported so far.

Since atomic nuclei are extended and a large part of relativistic
molecular structure calculations performed today use finite nucle-
ar models, one may ask whether the question how Douglas–Kroll
eigenfunctions behave close to a point charge is actually relevant.
However, although an extended nucleus removes all singularities
in a mathematical sense, these still raise their head through the
dependence of the results on the chosen nuclear model. Therefore,
knowing what happens in the limit of a point-charge nucleus is
still important.

2. The Douglas–Kroll Hamiltonian in a spherical wave basis

The Douglas–Kroll method, including higher orders, is well doc-
umented in the literature [14,20,22–25] and only those aspects
important in the present context will be covered here. For the pur-
pose of this presentation it is sufficient only to consider hydrogenic
atomic ions for which the external potential in which the electron
moves is spherical, VðrÞ ¼ � Z

r. One starts applying the exact Foldy–
Wouthuysen transformation for a free particle to this bound-elec-
tron Dirac operator HD

Hð1ÞD ¼ Uð0ÞHDUð0Þ
y ¼

E0 þ E1 O1

Oy1 �E0 þ E1

� �
ð1Þ

Uð0Þ ¼
A AR

�AR A

� �
ð2Þ

with the two-component operators E0, A, R given by

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 þmc2

2E0

s
; E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2c2 þm2c4

q
; R ¼ c~r~p

E0 þmc2 ð3Þ

and
E1 ¼ AVAþ ARVRA; O1 ¼ ARVA� AVRA: ð4Þ

This transformation does not bring the Dirac operator to a
block-diagonal form, the remaining off-diagonal blocks O1 are first
order in the external potential, O1 � Z1. Subsequent transformation

steps yield Hð2ÞD ;Hð3ÞD ; . . ., and in HðkÞD the off-diagonal blocks are fur-
ther reduced to � Zk. This sequence eventually converges to a
block-diagonal operator whose diagonal elements are now given,
by construction, as a power series in Z: in the diagonal blocks of
HðkÞD , the terms up to OðZ2k�1Þ are not changed in the subsequent
transformation steps, such that each step gives two more coeffi-
cients of an expansion of an exact block-diagonal operator in pow-
ers of Z.

Going from a four-component description which is symmetric
w.r.t. charge conjugation to a two-component formalism for the
positive-energy states only, one usually subtracts the rest energy
mc2 from the diagonal blocks, and then the first- and second-order
Douglas–Kroll operators are

HDK1 ¼ ðE0 �mc2Þ þ E1 ð5Þ

HDK2 ¼ HDK1 þ
1
2

W1O1 þ O1W1ð Þ ð6Þ

Note that other names are in also use for HDK1. W1 is the solution of
the operator equation

W1E0 þ E0W1 ¼ O1: ð7Þ

The expressions for the higher-order DK operators can be found
in the literature. Their derivation is tedious but much effort can be
delegated to computer algebra systems [23]. At this point we also
mention a quasirelativistic operator which one obtains if one adds
the potential to the relativistic kinetic energy

HRK ¼ ðE0 �mc2Þ þ V ð8Þ

(RK stands for ‘relativistic kinematics’). This is an operator for a
spinless particle which is lacking, for example, the spin–orbit inter-
action. It has been discussed a while ago [26] but apparently not
found much use. We mention this operator since the eigenfunctions
both of HDK1 and HRK are ‘‘more singular” than the Dirac eigenfunc-
tions [17,27,28], bound-state solutions for point-charge nuclei exist
for HDK1 only up to Z ¼ 124 and for HRK only up to Z ¼ 87.

This theory is sometimes called a momentum space theory be-
cause the basic operators R, A, and E0 are local in momentum space.
In real space only their action on eigenfunctions of~p2 is defined. If
we had such (normalized and orthogonal) two-component basis
functions Xi with~p2Xi ¼ k2

i Xi, then the matrix elements of our ba-
sic operators are well defined, for example

hXijE0jXji ¼ �idij ð9Þ
hXijE1jXji ¼ aiajhXijV jXji þ aiajrirjhXij~r~pV~r~pjXji ð10Þ
hXijO1jXji ¼ aiajrihXij~r~pV jXji � aiajrjhXijVr~pjXji ð11Þ

with

�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

i c2 þm2c4

q
; ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i þmc2

2�i

s
; ri ¼

c
�i þmc2 ð12Þ

Furthermore, the anticommutator relation Eq. (7) can be inverted
exactly in such a basis, and one finds for the matrix elements of W1

hXijW1jXji ¼
hXijO1jXji
�i þ �j

: ð13Þ

While the matrix elements of HDK1 can be evaluated exactly in such
a basis, one approximation cannot be avoided beyond first-order
Douglas–Kroll: for HDK2, one needs matrix elements of the product
W1O1 but one only has matrix elements of the two factors W1

and O1. This is where a resolution of the identity (RI approximation)
comes in, and one approximates

hXijW1O1jXji �
X

l

hXijW1jXlihXljO1jXji ð14Þ

All numerical Douglas–Kroll results reported so far follow the
protocol of Hess [29,30]. In most cases finite Gaussian basis sets
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