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a b s t r a c t

The relativistic four-component density functional approach based on the use of restricted magnetically
balanced basis (mDKS-RMB), applied recently for calculations of NMR shielding, was extended for
calculations of NMR indirect nuclear spin–spin coupling constants. The unperturbed equations are solved
with the use of a restricted kinetically balanced basis set for the small component while to solve the sec-
ond-order coupled perturbed DKS equations a restricted magnetically balanced basis set for the small
component was applied. Benchmark relativistic calculations have been carried out for the X–H and
H–H spin–spin coupling constants in the XH4 series (X = C, Si, Ge, Sn and Pb). The method provides an
attractive alternative to existing approximate two-component methods with transformed Hamiltonians
for relativistic calculations of spin–spin coupling constants of heavy-atom systems. In particular, no pic-
ture-change effects arise in our method for property calculations.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays it becomes a common point that relativity has an
immense effect on NMR shielding tensor and indirect nuclear
spin–spin coupling constants (SSCC) in heavy element compounds
[1–4]. Often calculations of those properties serve as a very deli-
cate probe to test different ways of treating relativistic effects
and the basis set quality. In particular, calculation of SSCC provide
a good test with respect to the basis set completeness in the core
area, from one side, and to the ability of the basis to describe subtle
effects of spin-polarization in molecules. Thus calculation of the
NMR parameters at a four-component level with both Hartree–
Fock (and nowadays – with post-Hartree–Fock) and DFT methods
always were at the cutting edge of theoretical chemistry. During
the last decade a number of four-component Hartree–Fock and
two-component Hartree–Fock and DFT based approaches for calcu-
lation of SSCC were developed (see Refs. [5–11] and cited therein).
A perturbational treatment of spin–orbit (SO) effects were also
considered [12,13]. Due to inability of the Hartree–Fock level of
theory to get reasonable accuracy in calculations of spin–spin cou-
plings and because the use of four- and two-component post-
Hartree–Fock methods would be extremely expensive, the major
attention was switched to DFT based approaches. A number of

applications were published using the zero-order regular approxi-
mation (ZORA) [2,3]. At present, it is by far the most often used
method for relativistic SSCC calculations but other approaches,
such as the infinite-order regular approximation with modified
metric (IORAmm) [9] and the second-order Douglas–Kroll–Hess
approximation [10] were also implemented recently. While the
use of two-component approaches became recently very popular,
their results still should be compared against those obtained at
the four-component Dirac–Kohn–Sham level. So far there have
been no DFT methods for relativistic four-component calculation
of SSCC available [1]. Here we report on our development, imple-
mentation and pilot benchmark application of such a four-compo-
nent Dirac–Kohn–Sham (DKS) approach.

One of the central problems in calculations of NMR parameters
at the Dirac level is related to the fact that part of the contributions
to shielding and SSCC appears as a sum over negative energy states.
That makes accurate calculation of those parameters depending
very much on the choice of a basis set for the small component.
This problem can be cured by the use of a special basis depending
on magnetic field or by applying a special transformation of the
Hamiltonian (the latter also could be considered as a special choice
of the basis) [14].

Recently we developed a new approach for calculation of NMR
shielding and SSCC based on the use of restricted magnetically bal-
anced (RMB) basis for the small component and implemented this
approach at the Dirac–Kohn–Sham (DKS) level (this method was
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named as mDKS-RMB (matrix DKS with the use of RMB basis) [15].
In contrast to other known approaches for treating the negative en-
ergy states in the context of calculating NMR parameters, the use
of RMB basis or Kutzelnigg’s transformation [16] provides the as-
sured variational stability of order O(c�4). The rigorous proof of this
statement is based on the generalized argumentation of Stanton
and Havriliak [14,17]. mDKS-RMB efficiently solves the problems
associated with summation over negative energy states and has a
very rapid convergence with respect to the basis set used for the
large component (the latter completely defines the basis for the
small component) thus providing a very competitive alternative
for such approaches as ODA and EFUTm [18] developed for NMR
shielding tensor calculations. While there are possible difficulties
with Kutzelnigg’s transformation [16] for the magnetic field due
to the magnetic moment of a nucleus (see Refs. [18,19] for more
details), our approach is free of those problems. As we already
mentioned in the previous paper [15] the mDKS-RMB method al-
lows the use, as a primary perturbation, of either an external uni-
form magnetic field or magnetic field due to the magnetic moment
of a nucleus. In the present work we report on our extension of the
mDKS-RMB approach by developing and implementing a method
for calculations of spin–spin coupling tensors. To the best of our
knowledge this is the first ever use of restricted magnetic balance
for calculation of spin–spin couplings. Despite the fact that the dia-
magnetic terms (connected with the summation over the negative
energy states [16]) give usually a minor contribution to the cou-
plings with most of the elements, such contributions could be
rather significant for coupling with a heavy nucleus. Besides, it is
always desirable to have a good reference method which treats
all terms in the most robust way and which is able to provide solid
data for benchmarking other less advanced approaches. Such accu-
rate treatment of the diamagnetic term becomes especially impor-
tant for implementations at the post-Hartree–Fock levels.

In the following section we will briefly describe our new ap-
proach for calculations of spin–spin coupling tensors within
mDKS-RMB. Computational details are given in Section 3. Some
benchmark calculations of SSCC will be discussed in Section 4, fol-
lowed by conclusions in Section 5.

2. Theory

Before proceeding to the theory part, we would like to explain
the notations used in the present work. Summation over repeated
indices is assumed, and the following index notation is employed:
i, j denote occupied positive energy spinors, a unoccupied positive
and negative energy spinors, p, q all positive and negative energy
spinors and k, s are basis function indices. Cartesian directions
are indexed by u, v. Superscripts L and S denote the large and the
small components, respectively. The Hartree system of atomic
units is used throughout the paper if not noted otherwise. If neces-
sary, subscripts 2 � 2 and 4 � 4 are used to stress that the corre-
sponding matrices are two- and four-component, respectively.

By definition the indirect nuclear spin–spin coupling tensor
J(M,N) between two magnetic nuclei M and N is proportional to
the reduced indirect spin–spin coupling tensor K(M,N) (customarily
written in SI units)

JðM;NÞ ¼ h
cM

2p
cN

2p
KðM;NÞ: ð1Þ

Here cM and cN represent the nuclear gyromagnetic ratios of the
corresponding nuclei M and N and K(M,N) is defined as the second
derivative of the electronic energy Eð~lM; ~lNÞ with respect to mag-
netic moments ~lM and ~lN of the nuclei M and N

KðM;NÞ ¼ d2Eð~lM; ~lNÞ
d~lMd~lN

�����
~lM¼~lN¼0

: ð2Þ

Since the magnetic fields due to the magnetic moments ~lM and
~lN have a minor effect on the electronic structure it is safe to use a
second-order perturbation theory for calculation of the indirect
nuclear spin–spin coupling tensor.

Let us start with the expression for the relativistic electronic en-
ergy in the presence of magnetic fields (due to magnetic moments
of two different nuclei M and N). Using the principle of minimal
coupling within the framework of the four-component Dirac–
Kohn–Sham approach, this energy can be expressed as the sum
of expectation values over occupied four-component spinors
uð~l

M ;~lN Þ
i

Eð~lM; ~lNÞ ¼ uð~l
M ;~lNÞ

i D00
kin þ D01 þ D10

��� ���uð~lM ;~lNÞ
i

D E
þ Eð~l

M ;~lN Þ
pot : ð3Þ

The first term on the right hand side represents the relativistic
kinetic energy of the system in the presence of the magnetic
moments of the nuclei M and N,

D00
kin � ðb� 14�4Þc2 þ c~a �~p; D10 � ~a �~A~lM ; D01 � ~a �~A~lN ; ð4Þ

where c is the speed of light,~p is the momentum operator~p ¼ �i~r,
~A~lM is the vector potential due to magnetic nuclei M (~RM is the posi-
tion of nucleus M)

~A~lM ¼
~lM �~rM

r3
M

; ~rM ¼~r �~RM: ð5Þ

Matrices ~a and b are 4 � 4 Dirac-matrices

~a ¼
0 ~r
~r 0

� �
; b ¼

r0 0
0 �r0

� �
; ð6Þ

where vector ~r ¼ ðr1;r2;r3Þ is composed of three 2 � 2 Pauli
matrices and r0 is 2 � 2 identity matrix:

r0 ¼
1 0
0 1

� �
; r1 ¼

0 1
1 0

� �
; r2 ¼

0 �i

i 0

� �
; r3 ¼

1 0
0 �1

� �
:

ð7Þ

Note, that in contrast to the non-relativistic theory, there are only
contributions linear in ~A in Eq. (3). The second term on the right
hand side of Eq. (3) represents the energy of non-relativistic electro-
static Coulomb interactions as well as the non-relativistic ex-
change-correlation functional (these terms depend on relativistic
densities but the first order relativistic correction, namely the Breit
term, and the dependence of the exchange-correlation energy func-
tional on currents are omitted in the present study)

Eð~l
M ;~lNÞ

pot � uLð~lM ;~lNÞ
i Eð~l

M ;~lN Þ
2�2

��� ���uLð~lM ;~lNÞ
i

D E
þ uSð~lM ;~lNÞ

i Eð~l
M ;~lN Þ

2�2

��� ���uSð~lM ;~lNÞ
i

D E
; ð8Þ

Eð~l
M ;~lNÞ

2�2 � �
X

M

ZM

rM
12�2 þ

1
2

Z
qð~l

M ;~lNÞ
0 ð~r0Þ
~r �~r0j j dV 012�2

þ exc qð~l
M ;~lN Þ

k

h i� �
2�2

: ð9Þ

Here ZM is the charge of the Mth nucleus and uLð~lM ;~lNÞ
i and uSð~lM ;~lN Þ

i

are the large and small components of the ith occupied four-compo-

nent spinor uð~l
M ;~lN Þ

i , respectively. exc qð~l
M ;~lN Þ

k

h i� �
2�2

is the non-col-

linear exchange-correlation energy density which depends on the
total electron density qð~l

M ;~lN Þ
0 as well as on three components of

the spin density vector ~q ~lM ;~lNð Þ ¼ qð~l
M ;~lNÞ

1 ;qð~l
M ;~lN Þ

2 ;qð~l
M ;~lN Þ

3

� �
in the

presence of nuclear magnetic moments ~lM and ~lN

qð~l
M ;~lNÞ

k � uð~l
M ;~lNÞy

i Rku
ð~lM ;~lN Þ
i ; k ¼ 0;1;2;3; ð10Þ

R0 �
r0 0
0 r0

� �
; ~R �

~r 0
0 ~r

� �
: ð11Þ
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