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Abstract

A molecular dynamics driver and surface hopping algorithm for nonadiabatic dynamics has been implemented in a development
version of the MNDO semiempirical electronic structure package. The required energies, gradients and nonadiabatic couplings are effi-
ciently evaluated on the fly using semiempirical configuration interaction methods. The choice of algorithms for the time evolution of the
nuclear motion and quantum amplitudes is discussed, and different schemes for the computation of nonadiabatic couplings are analysed.
The importance of molecular orbital tracking and electronic state following is underlined in the context of configuration interaction cal-
culations. The method is applied to three case studies (ethylene, methaniminium ion, and methanimine) using the orthogonalization cor-
rected OM2 Hamiltonian. In all three cases decay times and dynamics paths similar to high-level ab initio results are obtained.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Molecular dynamics (MD) [1–3] is widely used for the
study of equilibrium and non-equilibrium properties in
physics [4,5], chemistry [6–8] and biochemistry [7,9–12].
MD simulations usually rely on the Born–Oppenheimer
approximation [13], which decouples electronic and nuclear
motions. The nuclei move on a single potential energy
surface (PES) associated with a single electronic state
which is obtained from the solution of the time-indepen-
dent Schrödinger equation for a series of fixed nuclear
geometries. Nuclear motion is usually described by classi-
cal equations.

The Born–Oppenheimer approximation is excellent
when energy separations are large and the system is well
described by a single quantum state. However, when the
energy separation of different PESs becomes comparable
with the magnitude of the nonadiabatic coupling (typically

in the proximity of conical intersections), the Born–Oppen-
heimer approximation breaks down and nonadiabatic
effects must be explicitly taken into account. The incorpo-
ration of nonadiabatic effects in MD is essential for
describing a wide range of phenomena including photo-
chemistry, radiationless relaxation and charge transfer
reactions.

A great number of methods have been developed for the
treatment of nonadiabatic effects in MD [14–44]. Among
these one of the most popular is the surface hopping
method of Tully [15,16,20,31,45], where the nuclei evolve
on a single PES and nonadiabatic effects are included by
allowing hopping from one PES to another according to
the weight of the respective electronic state. This approach
gives an efficient description of nonadiabatic effects, is
asymptotically correct in regions of large energy separa-
tion, includes classical-quantum correlation and with a
proper choice of the switching criterion guarantees micro-
scopic reversibility [20]. On the other hand the results are
not independent of the representation used for the elec-
tronic states (adiabatic or diabatic), ambiguities may arise
over the choice of possible switching criteria and the total
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energy is not automatically conserved (an external con-
straint is needed to fix the total energy in the event of hop-
ping). Nevertheless, surface hopping generally performs
very well for molecular applications [46–49] and has there-
fore been widely used for the study of nonadiabatic
dynamics.

In this paper, we present our implementation of the sur-
face hopping approach in a development version of the
semiempirical MNDO package [50] and a detailed analysis
of technical aspects of the method. We apply the surface
hopping method to three case studies using the orthogonal-
ization corrected OM2 Hamiltonian [51,52] for the descrip-
tion of the PESs and show that this approach yields results
comparable to ab initio methods for nonadiabatic dynam-
ics. Section 2 describes the theory of the surface hopping
method, including the fewest switches algorithm for deter-
mining when hops occur and the velocity adjustments
required to maintain energy conservation. In Section 3
we discuss the implementation of the algorithm and the
molecular dynamics driver used for calculating surface
hopping trajectories. The implementation is applied to eth-
ylene, the methaniminium ion and methanimine in Section
4 and conclusions are presented in Section 5.

2. Theory

The surface hopping method employs an independent
trajectory approximation. A swarm of trajectories is con-
sidered, each one evolving on a single potential energy sur-
face. At each MD timestep there is a probability that a
trajectory propagating on one potential energy surface will
hop to another surface. This probability is controlled by a
stochastic switching algorithm, which must be designed in
such a way to guarantee that at any time the fraction of
all trajectories in a certain electronic state is, at least
approximately, equal to the quantum population of the
state.

In the surface hopping method nuclei are assumed to
move along a classical trajectory ~RðtÞ. The Hamiltonian
describing the electron motion is

Hð~r;~RÞ ¼ � �h2
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where a labels electronic degrees of freedom and VrR in-
cludes nuclear-electron and electron-electron potentials.
Hamiltonian (1) is time dependent through ~RðtÞ. The elec-
tronic system is described by the wave function Uð~r;~R; tÞ,
which is the solution of the time-dependent Schrödinger
equation

i�h
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¼ HUð~r;~R; tÞ: ð2Þ

The electronic wave function can be expanded in a basis of
known orthogonal wave functions /ið~r;~RÞ

Uð~r;~R; tÞ ¼
X

i

ciðtÞ/ið~r;~RÞ; ð3Þ

where ci(t) are complex-valued expansion coefficients. A
common choice for the expansion is the adiabatic represen-
tation, i.e. the basis functions are solutions of the time-
independent electronic Schrödinger equation
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Substitution of Eq. (3) into the Schrödinger equation (2),
multiplication on the left by /�j ð~r;~RÞ and integration over
~r yields
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where Hji and ~dji are
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and the chain ruleZ
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has been used. In the adiabatic representation the Hamilto-
nian matrix of Eq. (6) is diagonal, and Eq. (5) simplifies to

i�h
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¼ cjðtÞ�j � i�h
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The amplitude of each quantum mechanical state at a given
time is found by integrating equation (9) along the trajec-
tory ~RðtÞ. This information is used to determine whether a
switch to a different classical trajectory should occur or not.

2.1. Fewest switches algorithm

The criterion for switching between states must result in
a distribution of state populations over all trajectories that
reflects the populations given by integrating equation (9). It
is also important to achieve this result with a small number
of hops, because a criterion which results in a large number
of hops will give trajectories that effectively evolve on an
average of the potential energy surfaces rather than on a
single adiabatic surface [15]. Different choices are possible
for the switching algorithm [44,53,54], but in practice the
fewest switch algorithm (FSA) [15] is usually employed.

The FSA is derived by imposing that the number of
switches required to reproduce the statistical distribution
of state occupations is minimised. Switches between states
are governed by a stochastic criterion and are usually
assumed for simplicity to occur in an infinitesimal time per-
iod, although this is not a necessary condition. This causes
state transitions to be discontinuous in any single trajec-
tory, but over a swarm of trajectories this behaviour will
be smoothed out as the transitions will occur at different
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