

Chemical Physics

Chemical Physics 340 (2007) 171-180

www.elsevier.com/locate/chemphys

Is Cd_2 truly a van der Waals molecule? Analysis of rotational profiles recorded at the $A0_u^+$, $B1_u \leftarrow X0_g^+$ transitions

M. Strojecki, M. Ruszczak, M. Łukomski ¹, J. Koperski *

Marian Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Kraków, Poland

Received 23 June 2007; accepted 16 August 2007 Available online 24 August 2007

Abstract

Rotational profiles of the $^{228}\text{Cd}_2$ isotopomer recorded in the (v',v'')=(26,0),(27,0),(42,0),(45,0),(46,0),(48,0) vibrational bands of the $A0^+_u \leftarrow X0^+_g$ transition were analysed. As a result, the $B'_{v=26}=0.0311(5)$ cm⁻¹, $B'_{v=27}=0.0309(5)$ cm⁻¹, $B'_{v=42}=0.0279(5)$ cm⁻¹, $B'_{v=46}=0.0275(5)$ cm⁻¹ and $B'_{v=48}=0.0272(5)$ cm⁻¹ excited- as well as the $B''_{v=0}=0.0207(5)$ cm⁻¹ ground-state rotational constants of the $(^{114}\text{Cd})_2$ were determined. The analysis allowed determining the absolute values for the $R'_e(A0^+_u)=2.71(7)$ Å and $R''_e=3.76(4)$ Å excited- and ground-state bond lengths, respectively. The obtained result – the R''_e – distinctly shorter than that obtained with assumption of pure ground-state van der Waals bonding, supports a theoretical prediction of a covalent admixture to the bonding. Analysis of the partially-resolved rotational profile recorded in the (v',v'')=(38,0) band of the same isotopomer recorded at the $B1_u \leftarrow X^10^+_g$ transition allowed estimating the $B'_{v=38}=0.0317(2)$ cm⁻¹ rotational constant in the $B1_u$ state. © 2007 Elsevier B.V. All rights reserved.

Keywords: Cadmium dimer; Bond lengths; Rotational constants; van der Waals molecules; Covalent admixture; Interatomic potentials; Supersonic free-jet beam

1. Introduction

Laser spectroscopy of van der Waals (vdW) molecules produced and ro-vibrationally cooled in supersonic free-jet expansion is one of methods for investigation of molecular energy structure and geometry [1]. It was applied in low-resolution experimental studies of the alu $^3\Sigma_u^+(5^3P_1)$ [2], b0 $_u^+$ $^3\Pi_u(5^3P_1)$ [3–5], c1 $_u$ $^3\Pi_u(5^3P_2)$ [6], A0 $_u^+$ $^1\Sigma_u^+(5^1P_1)$ [7] and B1 $_u$ $^1\Pi_u(5^1P_1)$ [8] excited as well as the X0 $_g^+$ $^1\Sigma_g^+(5^1S_0)$ ground [7,8] Cd2 electronic-energy states (see Fig. 1). In the investigation of the singlet states [7,8], the A0 $_u^+$ state was characterized using a Morse–vdW function, whereas sets of turning points resulted from an inverse perturbation approach (IPA) procedure was applied in

characterization of both $A0_u^+$ and $B1_u$ states. One of the straightforward conclusions was that the R_e'' ground-state bond length is larger than those of the $R'_{e}(A0^{+}_{n})$ and $R'_{\rm e}({\rm B1_u})$ excited-state bond lengths. In addition, presence of a potential barrier in the B1_u state was determined in agreement with ab initio calculations [9]. Characterisation of the X0_g⁺ state was reported by Czajkowski and Koperski [10]. The study was based on a detection of so-called "hot" bands recorded at the $b0_u^+ \leftarrow X0_g^+$ transition. Studies of Łukomski et al. [7] concluded with Morse-vdW and Born–Mayer representations of the $X0_g^+$ -state bound well and repulsive wall, respectively. Among other results of characterization of the $A0_u^+$, $B1_u$ and $X0_g^+$ singlet states performed using different methods are those of Eden and coworkers [11,12], Bousquet [13] and Grycuk et al. [14]. However, none of them presented a high-resolution (e.g., rotational) spectroscopy of Cd₂. It should be mentioned, though, that Tran and Eden [12] claimed a partial resolution of a rotational structure while investigating the

^{*} Corresponding author. Tel.: +4812 663 5789; fax: +4812 6338494. E-mail address: ufkopers@cyf-kr.edu.pl (J. Koperski).

¹ Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Krakow, Poland.

Fig. 1. Interatomic potentials of Cd_2 shown for the $X0_g^{+1}\Sigma_g^+$ ground and $a1_u^{-3}\Sigma_u^+$, $b0_u^{+3}\Pi_u$, $c1_u^{-3}\Pi_u$, $A0_u^{+-1}\Sigma_u^+$ and $B1_u^{-1}\Pi_u$ excited states directly accessible in the excitation from the ground state [2–8]. Potentials are drawn according to results of *ab initio* calculations of Czuchaj [9]. Vibrational levels v'=26, 48, v'=38 and v''=0 in the $A0_u^+$, $B1_u$ and $X0_g^+$ electronic energy states, respectively, investigated in this article are depicted with horizontal solid lines. Levels v'=27, 42, 45, 46 in the $A0_u^+$ state were also investigated but they are not shown.

 $^1\Sigma_u^+\leftarrow \tilde{a}^3\Pi_g(5^3P_1)$ transition in the $(^{114}Cd)_2$ isotopomer. However, no analysis and/or values for rotational constants were reported.

First-time performed rotational spectroscopy of Cd₂ was reported from our laboratory by Łukomski et al. [15]. We studied one of the rotational profiles in a single (v',v'') = (45,0) vibrational band of the $A0_u^+ \leftarrow X0_g^+$ transition in the ²²⁸Cd₂ isotopomer. From the analysis of the *R*branch, the $B''_{v=0}$ and $B'_{v=45}(A0^+_u)$ rotational constants of the $(^{114}\text{Cd})_2$ were determined. This allowed estimating the R''_e and $R'_{a}(A0^{+}_{n})$ ground- and excited-state bond lengths. In this article, we present a complex multi-vibrational-band (i.e., for the (v', v'') = (26,0), (27,0), (42,0), (45,0), (46,0),(48,0)) and multi-rotational-branch (i.e., for the P- and *R*-branches) rotational analysis of the $A0_u^+ \leftarrow X0_g^+$ transition in ²²⁸Cd₂ isotopomer. This way, the accuracy of determination of the rotational constants as well as the bond lengths increased, and the obtained results supersede those of Łukomski et al. [15]. Moreover, a rotational profile recorded in the (38,0) band of the $B1_u \leftarrow X0_\sigma^+$ transition in the same isotopomer enabled estimating the $B'_{v=38}(B1_u)$ and R'_e(B1_u). The rotational analysis and new value for the R_e'' permitted an experimental corroboration of a theoretical hypothesis of a covalent admixture to the dominating ground-state vdW bonding in Cd₂. Such a corroboration was recently reported in low- [16] and high- [17] resolution investigation of Hg₂ and – preliminarily – in low-resolution study of Zn₂ [18]. With further rotational spectroscopy of Zn₂ it may complete the ongoing discussion on a bond characterization in the group-12 M_2 homoatomic molecules (M = Zn, Cd, Hg).

Results of ab initio calculations related to the Cd2 interatomic potentials are those of Bender et al. [19], Czuchaj et al. [9,20], Schautz et al. [21], Yu and Dolg [22] and Łukomski et al. [7]. In a very weakly bound ground state of the group-12 molecules, the long-range interaction is dominated by pure dispersion forces as expected from a simple consideration of the closed-shell atomic configurations [1]. Ab initio calculations of the interaction-energy components in the ground state of Hg₂ [23] showed that short-range induction effects play a significant role in the stabilization of Hg2. Therefore, the Hg2 may be regarded as an intermediate case between a weakly bound vdW molecule and a chemically bound species. The same behavior has been inferred from ab initio calculations of Zn₂ and Cd₂ [22,24]. Studies of Dolg and coworkers [21,22,24,25] resulted in a clear conclusion that the group-12 homoatomic molecules, besides a vdW-type interaction, exhibit the presence of significant covalent contributions to the bonding.

2. Theoretical analysis

For the experimental study, in both of the $A0_u^+ \leftarrow X0_g^+$ and the $B1_u \leftarrow X0_g^+$ singlet–singlet transitions the $^{228}\text{Cd}_2$ isotopomer was selected [15], mainly because of its relatively high abundance (11.85%) and its dominating homonuclear $^{114}\text{Cd}^{114}\text{Cd}$ (8.25%) over heteronuclear $^{112}\text{Cd}^{116}\text{Cd}$ (3.6%) composition.

In case of both $A0_u^+ \leftarrow X0_g^+$ and $B1_u \leftarrow X^10_g^+$ transitions, the vibrational progressions extend for considerably high v' (i.e., from v'=19 to 53 and v'=34 to 40 [26] for the former and latter, respectively). This assures a large isotope shift, very advantageous in the present study (see Eq. (1) below and Fig. 2). The vibrational and isotopic structure of the first transition considered here $(A0_u^+ \leftarrow X0_g^+)$ was thoroughly characterized in low-resolution study of Łukomski et al. [7]. Thus, the higher-resolution spectroscopy and complex analysis of rotational profiles would complete investigation of [7]. An introductory study of one of the rotational profiles in the (45,0) vibrational band in the 228 Cd₂ was recently published [15].

As the $A0_u^+ \leftarrow X0_g^+$ transition takes place between two Hund's-cases-(c) singlet states, both with $\Omega=0$, there are only P- and R-branches present (Q-branch is not). This offers a simplification of the recorded rotational profiles and their improved analysis. As for the second $B1_u \leftarrow X0_g^+$ transition considered in this study, it was previously characterized by Koperski et al. [8] and Ruszczak et al. [26] in a low-resolution study. In that case (i.e.,

Download English Version:

https://daneshyari.com/en/article/5376280

Download Persian Version:

https://daneshyari.com/article/5376280

<u>Daneshyari.com</u>