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Abstract

The molecular dynamics of a completely rigid molecule is described in terms of external coordinates, namely translations and rota-
tions, and a new algorithm is proposed, which is faster than other known methods and satisfies the constraints up to a desired accuracy.
The procedure dispenses with the adoption of Lagrange multipliers and it is derived from an expression previously proposed for the
motion of a semirigid molecule, when constraints are imposed to any selected number of intramolecular parameters. The latter need
not to be specified for a rigid body but cannot be altogether ignored since it is necessary to guarantee that internal and external coor-
dinates form a complete set of independent variables. This requirement is met by the familiar Eckart–Sayvetz conditions which provide
with an iterative procedure for the evaluation, through symmetric orthogonalization, of a matrix of rotation. It turns out that only a first
approximation of this matrix is necessary, therefore a final algorithm is proposed, based on the definition of infinitesimal angles of rota-
tion about the mass center.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper deals with the molecular dynamics (MD) of a
system of interacting rigid molecules undergoing intermo-
lecular forces. Only external, namely translational and
rotational, degrees of freedom are thus allowed, since
through the whole simulation all intramolecular distances
and angles are forced to maintain constant values. Because
of these kinematical restrictions there is no need to consider
internal degrees of freedom but actually they cannot be
ignored since it is necessary to guarantee that internal
and external displacements form a complete set of indepen-
dent variables. This requirement leads to the Eckart–Say-
vetz (ES) conditions [1,2] familiar to molecular
spectroscopists and it is one of the objectives of this paper
to show that they determine the amount of rotation of a
molecule constrained to be rigid.

The MD of a rigid molecule has been explicitly consid-
ered in Ref. [3], using Lagrange multipliers, and may be

also treated with the procedure of Ref. [4], which is
addressed to a semirigid molecule but obviously covers
the case when all internal degrees of freedom are con-
strained. Both procedures use the position Verlet algorithm
and require the inversion of a large, symmetric matrix
which must be carried out only once, at the beginning of
the simulation, but may become a problem for a very large
molecule. Such inversion is not necessary in the procedure
proposed here, which derives from the results of Ref. [4],
exploits the ES conditions and is faster than the two above
mentioned methods.

A short outline of the previous algorithms for the MD
of a rigid molecule is presented in Section 2, the ES condi-
tions are summarized in Section 3, the properties of the
space of displacements are discussed in Section 4 and a
new algorithm is presented in Section 5. The results are dis-
cussed in Section 6 and compared with those obtained with
the above mentioned iterative procedures, with the sym-
plectic splitting method of Ref. [5] and with the leapfrog
scheme of Ref. [6]. A succinct summary is given in the
Appendix for an iterative procedure to calculate a rotation
matrix for a molecule constrained to be rigid.
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2. Previous algorithms for rigid molecules

In the method of linear constraints [3] a minimal atomic
set is selected, formed by four non-coplanar atoms num-
bered 1, 2, 3, 4 in what follows, which define an oblique
coordinate system with origin on atom 1 and three basic
vectors e1, e2, e3 pointing to atoms 2, 3, 4, respectively.
Through all the paper we shall adopt the summation con-
vention over repeated literal suffixes in a single term or
algebraic expression. Therefore, letting Xis be the sth Carte-
sian coordinates of the ith atom measured in a space-fixed
frame i, the vectors of the oblique basis are related to the
reference frame by the transformation

el � r1ðlþ1Þ ¼ isðX ðlþ1Þs � X 1sÞ l ¼ 1; 2; 3

The customary notation with upper and lower suffixes is
adopted for covariant and contravariant vectors, therefore
the metric tensor of the oblique basis has components given
by

glm ¼ el � em glm ¼ el � em such that gleg
em ¼ dlm

where el = glmem are the reciprocal vectors. The rigid body
procedure is based on a set of constraints imposed to the
six distances r12, r13, . . . , r34 among the atoms of the mini-
mal set. A radius vector from the origin to any further
atom a = 5,6,7, . . . is then expanded in the oblique basis as

r1a ¼ q1e1 þ q2e2 þ q3e3 with ql ¼ r1a � el

where ql are contravariant components labelled with an
upper suffix. The above equation is rewritten in terms of
Cartesian components as

X as � X 1s ¼ q1ðX 2s � X 1sÞ þ q2ðX 3s � X 1sÞ þ q3ðX 4s � X 1sÞ

which amount to three additional linear constraint rela-
tions for each atom not included in the minimal set, with
a total number of 3(N � 4) equations defining a square ma-
trix, of the same dimensionality, which must be inverted at
the beginning of the simulation according to the procedure
of Ref. [3]. Besides six Lagrange multipliers, associated
with the distances among the first four atoms, are itera-
tively calculated and require the inversion of a 6 · 6 matrix
at each time step. The linear constraint method thus intro-
duces a total of 3N � 6 constraints and an equal number of
Lagrange multipliers which enter in the Cartesian equa-
tions of motion.

A second method [4] requires, for a completely rigid
body, the definition of 3N � 6 independent intramolecular
distances and angles, Rn, whose displacements are con-
strained to vanish through the whole simulation. In prac-
tice the Cartesian coordinates are calculated with the
simple position Verlet ignoring the kinematical restrictions
and the subsequent introduction of constraints is a geomet-
ric problem, which is solved iteratively and does non-
involve forces, time step or Lagrange multipliers. Within
each time step letting X h

is be the constrained Cartesian coor-
dinates accurate to the hth order, a better approximation,

accurate to the order h + 1, is given by Eq. (22) of Ref.
[4] reported here as

X hþ1
is ¼ X h

is �
oX is

oRn

� �
�

Rh
n � R�n

� �
ð1Þ

The labels (�) or (�) identify known quantities evaluated at
the beginning of a time step and the value Rh

n, of the nth
intramolecular parameter, is determined by the coordinates
X h

is, thus the differences Rh
n � R�n vanish only up the hth or-

der. The constant coefficients are given by

oX is

oRn

� �
�
¼ 1

mi
g�nm

oRm

oX is

� �
�

no sum over i ð2Þ

and the quantities g�nm form a matrix inverse to the Wilson’s
G matrix [7] with elements

Gnm � gnm
� ¼

1

mi

oRn

oX is

� �
�

oRm

oX is

� �
�

ð3Þ

where g�nm and gnm
� are covariant and contravariant compo-

nents, respectively, of the metric tensor in the subspace of
internal coordinates. These components do not depend
on the Cartesian system used for their numerical evaluation
therefore, for a rigid molecule, a 3N � 6 square G matrix is
calculated and inverted only once, at the beginning of the
simulation. From this point of view the procedure is similar
to the method of linear constraints, which requires a single
inversion of a 3(N � 4) square matrix and, in addition, the
inversion of a 6 · 6 matrix at each time step. It will be how-
ever shown, in Section 5, that for a rigid molecule it is not
necessary to define internal coordinates as it is sufficient to
consider only translational and rotational variables.

A different method is based on the Euler equations of
motion of a rigid body, usually implemented [8,9] in terms
of quaternions as first proposed by Evans [10]. The equa-
tions of motion will not be discussed here and only the
results are considered, obtained with an enhanced leap frog
scheme [6], so called because the normalization of the four
quaternions is not forced, as it is usually done, but dealt
with through a Lagrange multiplier. Despite this improve-
ment our calculations, reported in Section 6, show that the
accuracy achieved with the enhanced leap frog is unsatis-
factory and in any case lower than that provided by the
methods of Refs. [3,4].

Quaternions were not used in Ref. [11] where the orien-
tation of each body, in a system of rigid molecules, is spec-
ified by a 3 · 3 matrix under the constraint that it is
orthogonal and represents a proper rotation. In this
method six Lagrange multipliers are introduced, which
form a symmetric 3 · 3 matrix and lead to a system of
non-linear equations solved iteratively with an approxi-
mate Newton method. The iteration is avoided in a subse-
quent paper [5], which presents a symplectic splitting
method for rigid bodies whose orientation is integrated
through a sequence of planar rotations. The calculations
of Section 6 confirm that this procedure is better than that
based on quaternions, with conservation in time of the
total energy practically identical with that obtained with
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