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Abstract

A method for the inversion of experimental susceptibility spectra or relaxation functions in terms of a spectrum of relaxation times is
proposed. The method uses the Boas–Widder formula for the inversion of the Laplace transform for real variables. The method is tested
numerically on known spectra for the Cole–Cole, Cole–Davidsson and Kohlrausch–Williams–Watts models as well as for more complex
spectra obtained from the mode-coupling theory, and in all cases the agreement is very good.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The dielectric properties of materials have been exten-
sively studied for many years, in such diverse fields as phys-
ics, chemistry, engineering, biology etc. [1–8]. In many of
these systems one finds rather complex spectra with very
broad loss peaks which indicates a very broad distribution
of relaxation times. A central issue is to understand the ori-
gin of this broad distribution and relate it to the properties
of the material on a microscopic level.

The relaxation properties of materials is often described
via a relaxation function /(t), which then can be expressed
in terms of a distribution of relaxation rates as

/ðtÞ ¼
Z 1

0

e�utqðuÞdu ¼
Z 1

0

e�t=sgðsÞd ln s; ð1Þ

where g(s) = q(1/s)/s. For the long time or small frequency
region of interest here we have g(s) > 0 and (1) then imply
that the relaxation function /(t) is a completely monotonic
function [9]

ð�1Þn dn

dtn
/ðtÞP 0;

i.e., the system has no oscillatory motions on these time or
frequency scales.

The Laplace transform of /(t) is given by

/̂ðzÞ ¼
Z 1

0

e�zt/ðtÞdt ¼
Z 1

0

qðuÞ
zþ u

du ¼
Z 1

0

gðsÞ
zsþ 1

ds

and this determines the corresponding complex dielectric
constant �(z) or the susceptibility v(z) by way of

�ðzÞ ¼ �1 þ ð�0 � �1Þ
Z 1

0

e�zt � d/ðtÞ
dt

� �
dt

¼ �1 þ ð�0 � �1Þ 1� z/̂ðzÞ
h i

¼ �1 þ ð�0 � �1ÞvðzÞ. ð2Þ

Here �0 is the static dielectric constant for x = 0 and �1 the
corresponding one for high frequencies. In terms of the dis-
tribution function g(s) we then obtain

�ðzÞ � �1
�0 � �1

¼ vðzÞ ¼
Z 1

0

gðsÞ
1þ zs

d ln s ð3Þ

from which we get the real and imaginary parts v 0 and v00

by setting z = ix
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v0ðxÞ ¼
Z 1

0

gðsÞ
1þ ðxsÞ2

d ln s

v00ðxÞ ¼
Z 1

0

xsgðsÞ
1þ ðxsÞ2

d ln s
ð4Þ

A basic problem is to invert these relations, i.e., to obtain
the relaxation spectrum g(s) from a knowledge of either
the relaxation function /(t) or the dielectric constant �(z)
or rather the real or imaginary parts � 0(x) and �00(x). There
exist several methods to accomplish this both analytically
[9–15] and numerically [16–22]. From the Laplace trans-
form /̂ðzÞ and the resulting expressions for the real and
imaginary parts /̂ðz ¼ ixÞ ¼ /0ðxÞ � i/00ðxÞ one obtains
directly [11–14]

qðuÞ ¼ � 1

p
Im /̂ðue�ipÞ ¼ � 1

pu
Imvðue�ipÞ; ð5Þ

qðuÞ ¼ � 2

p
Im/0ðue�ip=2Þ ¼ 2

pu
Rev00ðue�ip=2Þ; ð6Þ

qðuÞ ¼ 2

p
Re/00ðue�ip=2Þ ¼ � 2

pu
Imv0ðue�ip=2Þ. ð7Þ

These relations gives the distribution q(u) or g(s) as an ana-
lytic continuation of the frequency dependent dielectric
constant to the negative real or the imaginary axis. How-
ever, to use these expressions one must first find an analyt-
ical representation of the experimental data, and then use
this to find q(u) as above.

It was argued [23] that the integrand xs/(1 + (xs)2) in
(4) is sharply peaked around s = 1/x and, at least for
rather broad spectra, the factor g(s) then can be extracted
outside the integral which gives

gðsÞ ¼ 2

p
v00ð1=sÞ. ð8Þ

This would then be a useful first approximation for g(s)
which is given directly by the loss at the real value 1/s.
The relation in (8) is actually an exact asymptotic expres-
sion when the relaxation function /(t) is a slowly varying
function as will be discussed below. For this case also v 0

and v00 as well as g(s) are slowly varying. A plausible exten-
sion of the simple result above would be a weighted average
of v00 at a few points close to 1/x, i.e.

gðsÞ ¼
XM

n¼0

hnv
00ðnn=sÞ ð9Þ

with some parameters hn and nn which have to be deter-
mined. In this paper we will show how this expression for
g(s) can be obtained from the Boas–Widder relation for
the inverse Laplace-transform. This gives in general an
integral expression for g(s), but a straightforward
approximation reduces this integral to a sum of v 0 or
v00 at a few points. The merit of expressing g(s) in terms
of the susceptibility for real frequencies is that one can
directly use experimental values for these to obtain the
spectrum of relaxation times. In a similar way it is possi-
ble to use the relaxation function /(t) directly to obtain
g(s).

The interest in obtaining g(s) from /(t) or v(z) is that the
former function may contain additional and complemen-
tary information about the relaxation processes. The relax-
ation spectrum g(s) can have a sharp cutoff or isolated
sharp peaks, even if v00(x) is rather structureless with a sin-
gle peak. For very broad spectra where (8) is valid it is clear
that g(s) contain the same information as the loss spec-
trum. However when (8) is valid it indicates that /(t) is a
slowly varying function, and this implies the additional
relations

v0ðxÞ ¼ 1� /ð1=xÞ; x! 0;

v00ðxÞ ¼ p
2

ov0ðxÞ
o ln x

; x! 0.
ð10Þ

Therefore for very broad spectra there is a direct relation
between the time and frequency dependent functions. The
relaxation function is directly given by the real part of
the susceptibility or vice versa.

2. Basic theory

Boas and Widder [10] showed that it is possible to invert
(1) to find q(u) or g(s) from the knowledge of /(t), and they
obtained the exact inversion formula

qðuÞ ¼ lim
k!1

Z 1

0

e�utP 2k�1ðutÞ/ðtÞdt ð11Þ

under the conditionZ 1

0

qðuÞdu <1

or equivalently that /(t = 0) is finite. In our case /(t) will
be normalized and /(0) = 1.

Here P2k�1 is the polynomial

P 2k�1ðtÞ ¼
1

Bðk þ 1; k � 1Þ
Xk

p¼0

k

p

� �
ð�1Þk�p

Cð2k � pÞ t
2k�p�1;

ð12Þ
where B(x, y) denotes the beta-function and C is the gam-
ma-function. This gives

gðsÞ ¼ 1

s
q

1

s

� �
¼ lim

k!1
gkðsÞ

¼ lim
k!1

1

s

Z 1

0

e�t=sP 2k�1ðt=sÞ/ðtÞdt

¼ lim
k!1

Z 1

0

e�uP 2k�1ðuÞ/ðusÞdu; ð13Þ

where we introduced

gkðsÞ ¼
Z 1

0

e�uP 2k�1ðuÞ/ðusÞdu. ð14Þ

The polynomial P2k�1 oscillates rapidly with increasing k-
values. The direct numerical evaluation of (14) is therefore
difficult.

We can evaluate the integral and summation over p in
(12) analytically in some special cases and then take the
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