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Abstract

A few theories of activated electron transfer in inverted Marcus region are used for bridging the non-adiabatic, solvent controlled and
deeply adiabatic transfer. The simple analytical interpolation between dynamic and stochastic theories provides a continuous description
of the electron transfer rate at any non-adiabatic coupling between the diabatic states. When coupling increases with shortening of inter-
particle distance the pre-exponent of the Arrhenius transfer rate first increases being quadratic in coupling, then levels off approaching
the ‘‘dynamic solvent effect’’ (DSE) region and finally is cut off exponentially due to adiabaticity of the transfer.

These changes affect significantly the spatial dependence of the transfer rate near the contact provided the coupling there is strong.
The rate tends to zero at contact distance being strongly suppressed nearby adiabatically. It is much smaller then the perturbation
(golden rule) and even DSE results. The latter is actually unattainable anywhere if contact tunneling is really strong. The transfer rate
is a bell-shaped curve adiabatic and non-adiabatic on the opposite sides and sensitive to the friction (DSE damping) only in between,
near the maximum.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The electron transfer rate is a fundamental property
used in the theories of intra-molecular and inter-molecular
reactions in dense media [1–4]. For electron transfer reac-
tions the potential surface consists of the two diabatic
energy levels 1 and 2 which are commonly assumed to be
parabolic and even identical but shifted relative to one
another. Recently, we studied the resonant electron trans-
fer when the free energy of the reaction DG = 0 [5]. Here,
we turn to the opposite case when the transfer 1! 2 is irre-
versible and proceeds in Marcus inverted region (Fig. 1),
where the free energy is negative and large:

�DG > k� kBT ; ð1:1Þ

where k is the reorganization energy of electron transfer
and kB is the Boltzmann constant. This is for instance the
highly exergonic ionization turning the neutral reactants
to the pair of the counter-ions:

Dþ A! Dþ þ A�.

In general the distant dependent rate of electron transfer

W ¼ W 0e�U=T ð1:2Þ
is a product of exponential Arrhenius factor (from now on
kB = 1) and the pre-exponent W0 whose r-dependence is
very specific for different inter-reactant distances r. The
activation energy

U ¼ ðDGþ kÞ2

4k
ð1:3Þ

is also r-dependent through both DG(r) and k(r) [3,4].
The free energy contains the Coulomb contribution

which in case of electrostatic attraction between counter-
ions reduces its value:
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DGðrÞ ¼ DG0 �
e2

�r
; ð1:4Þ

where D G0 = DG(1) and � is the static dielectric constant
of the solvent. The polar surrounding of the ions affects
also the reorganization energy making it distance
dependent:

kðrÞ ¼ ki þ k0ð2� r=rÞ; ð1:5Þ
where ki is the so-called inner-sphere reorganization energy
and

k0 ¼
1

�0

� 1

�

� �
e2

r

is the outer-sphere reorganization energy (of polar sur-
rounding with optical dielectric constant �0) at contact dis-
tance r. In highly polar solvents considered here the
Coulomb interaction is negligible, that is the free energy
is actually constant (DG(r) = DG0 = const.) and the reorga-
nization energy is large compared to the small inner-sphere
contribution neglected further on (ki = 0).

The r-dependence of W0(r) results mainly from the dis-
tance dependence on the non-adiabatic coupling which
increases exponentially with reduction of distance:

V ðrÞ ¼ V 0 e�
r�r

L ; ð1:6Þ
where L is the tunnelling length. The tunneling determines
the level splitting 2V at the crossing point of the diabatic
energy levels. The transfer is non-adiabatic at large dis-
tances where the splitting is small but becomes adiabatic
at contact if the coupling there is strong enough. In be-
tween it passes through the so-called dynamic solvent effect
(DSE), when the transfer is limited by diffusion along the
reaction coordinate to the crossing point [6,7]. Moreover,
Zusman proposed the formula that sewed together the per-
turbation theory and DSE [6]. The latter becomes the
upper limit of the transfer rate achieved at the largest
V � V0.

The DSE was obtained and studied a lot of times in the
intramolecular transfer and in the solid state [8–15]. How-
ever, it was common until recently to use mainly the pertur-
bation theory in the theories of electron transfer in liquids
presuming that V0 is small enough [3,4]. However, the pre-
cise fitting of transfer kinetics showed us that the true V0 is
as large that the DSE should be taken into account [16].
Now we think that this is not enough. We are going to
show here that even at more reliable, much smaller
V0 � 20 meV the transfer becomes adiabatically suppressed
at contact making DSE limit unattainable.

2. Pre-exponent dependence on distance

To cover the whole range of inter-particle distances one
has to use a number of theories valid at different coupling,
V, and the damping parameter c, which is actually a fric-
tion along the reaction coordinate. The relationship
between all these theories and their results was studied ear-
lier [17] and presented in two-dimensional domain (V, c).
The latter is reproduced in Fig. 2 in slightly different nota-
tions and used further on to reconstruct the space depen-
dence of W0(r) and W(r) at high collision frequency c.
However, the value of the latter should not exceed the bor-
ders shown by the double line in Fig. 2. Within these limits
the crossing region is passed by a single free pass. It is also
presumed that V� T. Under these conditions the velocity
of passing conserves during the crossing allowing the clas-
sical Landau–Zener formula to be employed [17].

It should be also noted that in Ref. [17] a bit different
presentation of the transfer rate (1.2) was used:

W ðrÞ ¼ ACTST ¼ A
x
2p

e�U=T ; ð2:1Þ

where CTST is the canonical expression of the transition
state theory (TST) rate through the linear frequency of
the free vibrations in parabolic potential well, x/2p. We
see from the comparison that

W 0ðrÞ ¼
x
2p

AðrÞ ð2:2Þ

has the same r-dependence as A(r).
In particular, within the second order perturbation the-

ory W0(r) has the commonly used form [3,4,17–21]:

W PT
0 ¼

V 2

�h

ffiffiffiffiffiffi
p
kT

r
¼ x

2p
APT; ð2:3Þ

where

APT ¼ 2
ffiffiffiffiffiffi
pD
p

and D ¼ p2V 4

�h2x2kT
¼ a2. ð2:4Þ

Parameter

a ¼
ffiffiffiffi
D
p
¼ pV 2

�hx
ffiffiffiffiffiffi
kT
p ð2:5Þ

is space dependent due to exponential decrease of coupling
(tunnelling) strength with inter-particle distance according
to Eq. (1.6). Parameter a chosen as an ordinate in Fig. 2

Fig. 1. The intersection of the parabolic diabatic energy levels in the
inverted Marcus region.
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