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Abstract

The question whether a dissipative quantum system can approximately be described by a Markov process is reexamined using Brown-
ian motion in a field of force as an example. The exactly solvable model of a damped harmonic oscillator allows for a precise identifi-
cation of the range of validity of Markovian evolution equations. Such equations are valid both in the limits of weak and strong damping
if the temperature is not too low. From these findings the parameter domain within which the weak coupling quantum master equation
and the strong coupling quantum Smoluchowski equation can be employed to describe nonlinear quantum systems is outlined.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction to quantum Brownian motion and the
quantum master equation

With the centennial of Einstein�s explanation of classical
Brownian motion as an effect of fluctuations that are
intrinsic to molecular kinetics, the concepts of quantum
Brownian motion have also found renewed attention.
While for quantum dissipative systems there is an amaz-
ingly large body of work that starts from ad hoc postulates
or assumptions, such as quantization ‘‘rules’’ for dissipa-
tive systems, one can hope that the large majority of phys-
icists adheres to the idea that a dissipative quantum system
is a system S in interaction with a reservoir R. Then
SþR evolves in time according to the standard rules of
quantum mechanics, meaning that the density matrix
qSR(t) of SþR at time t can in principle be calculated
from the density matrix qSR(0) at some initial time t = 0
as qSR(t) = U(t)qSR(0)U

�(t) with the unitary time evolution
operator U(t) of SþR. Dissipative dynamics then
emerges for the reduced density matrix q(t) = trRqSR(t) of
the subsystem S of SþR whenever the reservoir R,

which is traced out in the trace trR over a complete set of
reservoir states, has certain general properties. Essentially,
the reservoir must be a large system with a quasi-continu-
ous, sufficiently smooth energy spectrum, which interacts
with S is such a way that each transition between two
eigenstates of S is coupled to a huge number of transitions
in R with coupling functions that depend again sufficiently
smoothly on the reservoir energies.

This system + reservoir concept is also a widely ac-
cepted basis of the statistical mechanical description of
classical dissipative systems, and it has been employed to
derive the generalized Fokker–Planck equation describing
the time evolution of the phase space distribution function
f(t) of a system S in contact with a thermal bath. f(t) is the
classical analogue of the reduced density matrix q(t) which
approaches f(t) in the classical limit. Let us discuss in the
sequel specifically the problem of Brownian motion in
one dimension. This allows us to keep things simple, be
more concrete, and give some explicit results, while the
model is at the same time exemplary, since similar conclu-
sions can be drawn for other dissipative systems. For a par-
ticle of mass M moving in a potential field V(q) while
interacting with a heat bath, the classical Fokker–Planck
equation (FPE) reads [1]
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o

ot
f ðp; q; tÞ ¼ � o

oq
p
M

þ o

op
dV
dq

� �
f ðp; q; tÞ

þ o

op
c p þMkBT

o

op

� �
f ðp; q; tÞ;

where p, q are the phase space variables momentum and
position of the Brownian particle. The first line of the
FPE describes the reversible classical dynamics of an
ensemble of particles with distribution f(t) in a potential
field, while the second line adds the effects of the heat bath
environment at absolute temperature T. The influence of
the reservoir, which is characterized by the damping con-
stant c, gives rise to a frictional force �cp and a diffusive
broadening of the distribution function f(t) caused by the
term Dp(o

2f/op2) with the diffusion constant (in momentum
space) Dp = MkBTc.

The generalized FPE derived from a microscopic sys-
tem + reservoir model differs from the conventional FPE
in the second line, which now reads [2]Z t

0

ds
o

op
cðt � sÞ p þMkBT

o

op

� �
f ðp; q; sÞ

with the damping kernel c(s). This simple form holds for
linear coupling when the Hamiltonian of the model is
translationally invariant in the absence of the potential
V(q). There are further generalizations of the FPE allow-
ing, e.g., for a position dependence of the damping kernel.
Here, we will focus on the most important feature, as far as
basic concepts are concerned, arising within a microscopic
model, namely the retardation effects described by c(s). The
statistical mechanical derivation relates the damping kernel
with the time correlation function of the fluctuations dF(t)
of the force exerted by the heat bath on the Brownian
particle

hdF ðtÞdF ðsÞi ¼ MkBT cðjt � sjÞ.
Usually, this correlation function decays within a charac-
teristic memory time 1/xR, where xR characterizes the
bandwidth of reservoir modes coupled to the Brownian
particle. Within classical statistical mechanics it is entirely
consistent to consider the limit of vanishing memory time,
i.e., xR ! 1. In this limit of ‘‘Ohmic’’ dissipation the force
dF(t) becomes d-correlated in time, that is the frequency
spectrum turns white, and one has

cðjtjÞ ¼ 2cdðtÞ;
so that the generalized FPE reduces to the ordinary one.

The powerful concept of Fokker–Planck equations, or
of statistically equivalent Langevin equations, for classical
dissipative systems has been exemplary for the construction
of evolution equations for the reduced density matrix q(t)
of a quantum system S in contact with a heat bath R. It
seems natural to aim at an equation of motion in the form
of a quantum master equation (QME)

o

ot
qðtÞ ¼ LdissqðtÞ;

where the dissipative Liouville operator

Ldiss ¼
i

�h
½HS; � þ K

contains the commutator with the Hamiltonian HS govern-
ing the reversible dynamics of S [3] and a term K describ-
ing the influence of the reservoir. The study of dissipative
quantum dynamics by means of QMEs has started system-
atically about 50 years ago [4], and this approach was very
successful, in particular in quantum optics.

A prototype for further developments was the QME for
a damped harmonic oscillator derived by Weidlich and
Haake [5], for which a spectral decomposition of the dissi-
pative Liouville operator in terms of a bi-orthogonal set of
basis operators can be explicitly constructed (similar to the
bi-orthogonal left and right eigenfunctions of a Fokker–
Planck operator [1]). This has allowed to demonstrate
explicitly that the QME propagates any positive initial re-
duced density matrix q(0) through a sequence of positive
density matrices q(t) to a unique equilibrium state qeq.
The mathematical analysis of the underlying structure
has led to the concept of a completely positive semigroup
of time evolution operators for dissipative quantum sys-
tems and to the identification of the generators of these
semigroups as Liouville operators of Lindblad form [6]

Ldissq ¼ i

�h
½HS;q� þ

1

2�h

X
i

½Liq; L
y
i � þ ½Li; qL

y
i �

� �
;

where the Li are arbitrary operators of S. In view of the
apparent evidence and considerable mathematical beauty
of the theory [7], many physicists in the field of quantum
statistics consider a Liouville operator of Lindblad form
as the quantum mechanical generalization of a Fokker–
Planck operator.

Like the FPE, the QME should be put on a statistical
mechanical basis by starting from the unitary time evolu-
tion qSR(t) = U(t)qSR(0)U

�(t) of the entire system SþR.
To obtain the time evolution of the reduced density matrix
q(t) = trRqSR(t) of the subsystem S, the reservoir needs to
be traced out. This can be achieved with the help of projec-
tion operator techniques [4,8] that lead to a formally exact
evolution equation for q(t) of the form

o

ot
qðtÞ ¼ i

�h
½HS; qðtÞ� þ

Z t

0

dsKðt� sÞqðsÞ.

In this generalized QME the influence of R is described in
terms of a memory kernel K(s). An ordinary QME is then
obtained in the so-called Markov approximation where
memory effects are disregarded. However, for the QME
the limitations of such a ‘‘derivation’’ are substantially
more serious than those arising in the derivation of the
FPE from the generalized FPE, as we shall discuss now.

First, a closed evolution equation for q(t) (or likewise
for f(t) in the classical limit) can only be obtained for a spe-
cific class of initial states. Consider again our example of a
Brownian particle. In the classical case one usually assumes
that an initial state of the particle with momentum p0 and
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