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a b s t r a c t

Dynamics between reactants and products are often mediated by a rate-determining barrier and an asso-
ciated dividing surface leading to the transition state theory rate. This framework is challenged when the
barrier is time-dependent because its motion can give rise to recrossings across the fixed dividing surface.
A non-recrossing time-dependent dividing surface can nevertheless be attached to the TS trajectory
resulting in recrossing-free dynamics. We extend the formalism—constructed using Lagrangian
Descriptors—to systems with additional bath degrees of freedom. The propagation of reactant ensembles
provides a numerical demonstration that our dividing surface is recrossing-free and leads to exact TST
rates.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The accuracy in the determination of reaction rates relies on the
precision with which reactants and products can be distinguished
in the underlying state space. Usually, the boundary between these
regions contains an energetic saddle point in phase space to which
an appropriate dividing surface (DS) can be attached. Transition
state theory (TST) [1–18] then provides a powerful basis for the
qualitative and quantitative description of the reaction. The rate
is obtained from the flux through the DS and it is exact if and only
if the DS is free of recrossings. Advances in the determination of
this fundamental quantity can impact a broad range of problems
in atomic physics [19], solid state physics [20], cluster formation
[21,22], diffusion dynamics [23,24], cosmology [25], celestial
mechanics [26,27], and Bose-Einstein condensates [28–32], to
name a few.

In autonomous systems, the recrossing-free DS is attached to a
normally hyperbolic invariant manifold that can be constructed
using e.g. normal form expansions [26,33–41]. The situation
becomes fundamentally different if the system is time-
dependent, e.g. if it is driven by an external field or subject to ther-
mal noise. In one-dimensional time-dependent systems, a DS with
the desired property is given by the transition state (TS) trajectory
[42–51] which is a unique trajectory bound to the vicinity of the
saddle for all time.

In systems with dimension greater than one, the reacting parti-
cle can simply bypass the TS trajectory (point) by having a non-
zero velocity perpendicular to the reaction coordinate. Thus one
must attach a multi-dimensional surface to the TS trajectory that
separates reactants and products. The use of perturbation theory
in multi-dimensional cases provides both the TS trajectory and
the associated geometry on which this dividing surface can be con-
structed. The challenge, addressed in this Letter, is how to obtain
this multi-dimensional structure without perturbation theory.
One possible approach lies in the use of the Lagrangian descriptor
(LD) [52,53] used recently by Hernandez and Craven [54,55] to
obtain the TS trajectory without resolving the DS at higher dimen-
sion. This alternate framework is necessary when there is no useful
reference such as in barrierless reactions [49], and more generally
to avoid the convergence issues that invariably plague a perturba-
tion expansion far from the reference. In the case of field-induced
ketene isomerization [55], the LD was computed across the entire
phase space. It not only revealed the structure of the DS, but also
coincided with the final state basins for each initial condition in
phase space for both 1-dimensional and 2-dimensional representa-
tions. However, while the approach is formally applicable to arbi-
trary dimension, we have found that it is difficult to perform the
minimization of the naive LD, even in dimensions as low as two.

The time-dependent Lagrangian descriptor dividing surface
(LDDS), introduced in this Letter is the natural extension to n
dimensions for n > 1. We freely choose ð2n� 2Þ phase-space coor-
dinates for which we fix the initial conditions, and use the LD
approach to identify a corresponding trajectory, which we call an
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anchor trajectory. It is defined by the intersection of the stable and
unstable manifolds of the time-dependent Hamiltonian [56,57].
The TS trajectory is the anchor trajectory—which necessarily
remains in the vicinity of the TS region for all past and future
time—with the least vibrational motion orthogonal to the reactive
degree of freedom. The LDDS is attached to the family of anchor
trajectories and is necessarily ð2n� 1Þ dimensional. In the special
case of a one-dimensional system (n ¼ 1) the LDDS coincides with
the moving DS on the TS trajectory [54].

2. Theory and methods

2.1. Two-dimensional model system

We illustrate the construction of the LDDS by modeling the
dynamics of a two-dimensional chemical reaction with stationary
open reactant and product basins. Hamilton’s equation of motion
propagates the particle according to a non-autonomous Hamilto-
nian in mass-weighted coordinates with potential

Vðx; y; tÞ ¼ Eb exp �a x� x̂ sin xxtð Þ½ �2
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Here, Eb is the height of a Gaussian barrier with width a oscillating
along the x axis with frequency xx and amplitude x̂;xy is the fre-
quency of the harmonic potential in the y direction, and the term
ð2=pÞ arctan 2xð Þ is the minimum energy path whose form induces
a nonlinear coupling between the two degrees of freedom. For sim-
plicity, all variables are presented in dimensionless units, where the
scales in energy (and kBT), length, and time are set according to half
the maximum barrier height of the potential, twice the variance of
the Gaussian distribution, and the inverse of the periodic frequency,
respectively. In these units, the dimensionless parameters in Eq. (1)
are set to Eb ¼ 2; a ¼ 1; xx ¼ p; xy ¼ 2, and x̂ ¼ 0:4.

2.2. Using Lagrangian descriptors to obtain dividing surfaces

As the dividing surface between reactant and product basins is
in general a high-dimensional hypersurface, the stable and unsta-
ble manifold itself become high-dimensional objects. In the con-
text of TST, the Lagrangian descriptor (LD) at position x0, velocity
v0, and time t0, is defined as the integral [49,51,54],

Lðx0;v0; t0Þ ¼
Z t0þs

t0�s
kvðtÞkdt: ð2Þ

It is a measure of the arc length of the unique trajectory xðtÞ in for-
ward and backward time over the time interval ½t0 � s; t0 þ s�, and
the parameter s is chosen such that it covers the relevant time scale
of the system [in this letter, we use s ¼ 10 corresponding to five
periods of the oscillating barrier in Eq. (1)]. The importance of the
LD (2) naturally results from the fact that the stable and unstable
manifoldsWs;u which are attached to the barrier top in phase space,
correspond to the minimum of the forward (f: t0 6 t 6 t0 þ s) and
backward (b: t0 � s 6 t 6 t0) contributions to the LD,

Wsðx0;v0; t0Þ ¼ arg minLðfÞðx0;v0; t0Þ; ð3aÞ
Wuðx0;v0; t0Þ ¼ arg minLðbÞðx0;v0; t0Þ: ð3bÞ

Here, the function arg min denotes the argument of the local min-
imum of the LD hypersurface close to the barrier top. In n dimen-
sions, we fix ð2n� 2Þ variables freely (which would be least
associated with the reactive degree of freedom) and perform the
minimization in Eqs. (3). The intersection of these two manifolds

T ðx0;v0; tÞ � Wsðx0;v0; tÞ \Wuðx0;v0; tÞ; ð4Þ

is the t ¼ 0 value of the anchor trajectory to which a moving DS can
be attached. The central result of this Letter is that the family of
these anchor trajectories T ðtÞ the family of these anchor trajectories
T ðtÞ carries the associated family of moving dividing surfaces that
we call the Lagrangian descriptor dividing surface (LDDS), and that
we show below to be a recrossing-free DS. The anchor surface T ðtÞ
is a ð2n� 2Þ-dimensional object embedded in the 2n-dimensional
phase space meaning in the special case of a one-dimensional sys-
tem, this intersection is a single point, namely the position of the TS
trajectory at given time [54].

The algorithm used to obtain T ðtÞ can be explained by means of
one of the insets in Fig. 1. These insets show the LD of an x-vx-
section for a certain time t and fixed y and vy. The LD is calculated
according to Eq. (2) by integrating trajectories with the respective
initial conditions (x; y;vx;vy; t). They are obtained using a standard
(symplectic) Velocity-Verlet integrator with a sufficiently small
time-step to capture the time-dependence in the potential, Eq.
(1), and to ensure convergence in the final positions and velocities.
The structure of the stable and unstable manifold is identified
through the local minima in the LD’s x-vx-section. Their intersec-
tion yields the phase space coordinates, x and vx, of the point
T ðy;vy; tÞ to which the LDDS is attached. Repeating this procedure
for an equidistant grid in the y-vy space (for a fixed time t) results
in a mesh of points of the LDDS T ðtÞ. The smooth surfaces shown
here are constructed through spline interpolation of this mesh.

3. Results

3.1. Trajectory analysis

In Fig. 1 (center), we present a typical reactive trajectory (red
solid line) undergoing a transition from the reactants (x ! 1) to
products (x ! �1). Because of the oscillating barrier in the two
degree of freedom system (1), the trajectory shows several loops
close to the barrier top. Its dominant motion is perpendicular to
the reaction coordinate, but the trajectory also shows oscillations
along the latter. Such nontrivial oscillations are a general feature
of particles with an energy slightly above the barrier top. As a con-
sequence, it is not generally possible to define a recrossing-free DS
in the configuration space alone.

Although the particle’s dynamics is rather complicated near the
barrier top, the reaction dynamics becomes clearer by focusing on
the relative motion of the particle with respect to the time-
dependent manifolds. In Fig. 1, phase space portraits of the LD
are displayed for eight illustrative points along the selected trajec-
tory. The stable (unstable) manifold corresponding to the mini-
mum valleys of the LD according to Eq. (3) is shown as a black
(yellow) dashed line. The time-dependent position x�ðy;vyÞ where
they intersect is highlighted by a vertical, black dotted line. In the
first three points, the particle is on the RHS of x�ðy;vyÞ, crosses it at
point 4, and then remains on the LHS of x�ðy;vyÞ for the last 4
point, as noted with the corresponding symbol defined in the cap-
tion. Each of the LD plots in the insets—labeled according to the
corresponding point 1; . . . ;8—shows an x-vx-cut through phase
space for the instantaneous values y;vy at the respective times t.
In this and every other trajectory we have sampled, the particle
crosses the corresponding x�ðy;vyÞ no more than once satisfying
the recrossing-free criteria. For a single trajectory (that fixes y
and vy as the two remaining degrees of freedom in phase space
and therefore leads to an effective one-dimensional system), the
intersection of the manifolds (4) thus defines a recrossing-free
DS that coincides with the TS trajectory of the effective one-
dimensional system.

In the full phase space description of the two-dimensional sys-
tem defined in Eq. (1), we can define a family of intersections
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