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a b s t r a c t

We investigated the effect of the morphology of 2,20 ,7,70-tetrakis-(N,N-di-p-methoxyphenylamine)-9,90-
spirobifluorene (spiro-OMeTAD) prepared using chlorobenzene (CB) and 1,2-dichlorobenzene (DCB) on
the performance of perovskite solar cells (PSCs). We find that a more uniform and smoother spiro-
OMeTAD layer was obtained using DCB than CB. The PSCs prepared using DCB exhibited a higher power
conversion efficiency (PCE = 16.2%) than those obtained using CB (PCE = 14.5%). The hysteresis was
reduced from 4.8% to 0.6%, with improved stability. The highest PCE of PSCs prepared using DCB was
16.6%, indicating that the use of DCB for spiro-OMeTAD processing enables the fabrication of high-
performance PSCs.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Following the first application of methylammonium lead halide
perovskites (CH3NH3PbX3, X = Cl, Br, or I) in solar cells by Miyasaka
and coworkers in 2009 [1], the development of perovskite solar
cells (PSCs) has been very rapid, because of their excellent perfor-
mances and simple fabrication process. A record power conversion
efficiency (PCE) of 22.1% was recently reported for a single PSC [2],
highlighting the great potential of these systems for future com-
mercialization [2–6].

Common PSCs have a typical p-i-n structure, with the per-
ovskite sandwiched between the hole and electron transport layers
[3–7]. A mesoporous TiO2 layer is usually deposited onto a com-
pact thin TiO2 layer, fabricated on a fluorine-doped tin oxide
(FTO)-coated glass substrate, to form the n-type electron transport
layer [3–7]. In the case of the hole transport layer, 2,20,7,70-tetrakis-
(N,N-di-p-methoxyphenylamine)-9,90-spirobifluorene (spiro-
OMeTAD) is widely used for extracting holes from the perovskite
layers and transporting them to the metal electrode [3–7]. Besides
the specific materials used as perovskite absorbers and electron/-
hole transporters, the morphology of each layer plays a very

important role in the device performance [8–17]. For examples,
the morphology of the perovskite layer may affect its light harvest-
ing and charge generation capabilities [8], whereas the morphol-
ogy of the electron and hole transport layers has a strong
influence on the charge transport, dissociation, and collection pro-
cesses [9–17]. Recent investigations of the effect of the TiO2 mor-
phology on the performance of PSCs have led to the use of a
mesoporous TiO2 layer, a compact TiO2 layer, and TiO2 nanomate-
rials of different size as the electron transport layer in high-
performance PSCs [3–7,10,13–15]. On the other hand, in the case
of the hole transport layer, doping with organic and/or inorganic
materials is a widely used strategy to improve the hole transport
properties of spiro-OMeTAD [3–7,16,17]. The preparation of the
spiro-OMeTAD layer usually involves dissolving spiro-OMeTAD in
chlorobenzene (CB) [3–7,16,17]. In addition, ethyl acetate has been
used for spiro-OMeTAD preparation, which resulted in a high PCE
of 19.4% [18]. However, other solvents have not been widely used
for spiro-OMeTAD layer preparation. Furthermore, the control of
the morphology of the spiro-OMeTAD layer has not been thor-
oughly investigated so far. Solvent engineering is a widely used
strategy to control the morphology of organic layers [11,12], which
highlights the importance of investigating the effect of solvent-
related changes in the morphology of the spiro-OMeTAD layer on
the performance of PSCs.

In this work, we investigate the effect of the spiro-OMeTAD
morphology on the performance of PSCs by using CB and
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1,2-dichlorobenzene (DCB) for the deposition of the spiro-OMeTAD
layer. The analysis shows that DCB leads to a smoother spiro-
OMeTAD layer compared with CB. This finding is attributed to
the high boiling point and low vapor pressure of DCB, which con-
siderably reduces the solvent evaporation rate during the forma-
tion of the spiro-OMeTAD layer by solidification. The improved
morphology of the spiro-OMeTAD layer enhances its contact with
the perovskite and the metal electrode. As a result, the PCE of PSCs
based on a DCB-processed spiro-OMeTAD layer increased from
14.5% to 16.2%, with a simultaneous enhancement in the open cir-
cuit voltage (Voc), short circuit current density (Jsc), and fill factor
(FF) characteristics. Furthermore, the DCB-processed spiro-
OMeTAD layer led to significantly reduced hysteresis (from 4.8%
to 0.6%) and improved stability. The best PSC prepared using the
DCB-processed spiro-OMeTAD layer showed a PCE as high as
16.6%. The present results indicate that using DCB for processing
spiro-OMeTAD represents a simple and effective strategy for fabri-
cating high-efficiency, low-hysteresis, and stable PSCs.

2. Experimental section

2.1. Device fabrication

Lead iodide (PbI2), spiro-OMeTAD, and methylammonium
iodide (MAI) were purchased from Sigma-Aldrich (USA), Nano-C
(USA), and Xi’an Polymer Light Technology Corp. (China), respec-
tively. All the solvents (CB, DCB, ethanol, 1-butanol, isopropanol,
and N,N-dimethylformamide) used in this work were purchased
from Sigma-Aldrich (USA). The perovskite precursor solution was
prepared by dissolving MAI and PbI2 (1:1 M ratio) in anhydrous
N,N-dimethylformamide with a total concentration of 45 wt%. As
shown in Fig. 1(a), the PSCs were fabricated in a FTO/TiO2/
perovskite/spiro-OMeTAD/Au configuration. First, a 20 nm-thick
compact TiO2 layer was coated on the cleaned FTO substrates by
aerosol spray deposition of titanium diisopropoxide bis(acetylace-

tonate) (Sigma-Aldrich, USA) in 1-butanol solution. Then, a com-
mercial TiO2 paste (18NRT, Dyesol) diluted in ethanol was spin-
coated on the compact TiO2 layer. The TiO2-coated substrates were
annealed at 500 �C for 30 min, following which the CH3NH3PbI3
perovskite precursor solution was spin-coated on the FTO/TiO2

substrate at 5000 rpm in a N2-filled glove box. During the spin-
coating process, 120 lL CB was quickly added on the surface of
the substrate after a specific delay time of 6 s to form a smooth
and pinhole-free perovskite layer. The hole transport material
was prepared by dissolving 75 mg mL�1 spiro-OMeTAD, 28 lL 4-
tert-butylpyridine, and 18 lL of a solution of bis(trifluoromethane)
sulfonamide lithium salt (520 mg in 1 mL acetonitrile) in 1 mL CB
or DCB. Then, the solutions were separately spin-cast onto the per-
ovskite film at 3000 rpm for 30 s. Finally, an Au anode of 100 nm
was deposited on the devices under a vacuum of 10�4 Pa. The effec-
tive working area of the PSCs, determined by a shadow mask, was
0.1 cm2.

2.2. Characterization

The surface morphology of the perovskite and spiro-OMeTAD
layers was inspected by atomic force microscopy (AFM, Veeco,
USA). Ultraviolet–visible (UV–vis) absorption spectra were mea-
sured by a Lambda 750 (Perkin Elmer, USA) spectrometer. The pho-
toluminescence (PL) spectra were measured using a spectrometer
(FLS920, Edinburgh Instruments, UK). Cross-section scanning elec-
tron microscopy (SEM) images were acquired using a microscope
(Hatachi, Japan) operated at an acceleration voltage of 12 kV. Elec-
trochemical impedance spectroscopy (EIS) analysis was performed
in dark conditions using a SP-240 potentiostat (Bio-Logic, France)
in the frequency range of 0.1 Hz to 7 MHz. The current density–
voltage (J–V) characteristics of the PSCs were measured under an
irradiation intensity of 100 mW cm�2 (1 sun, AM 1.5). The incident
photon-to-current efficiency (IPCE) was measured using a Solar
Cell IPCE measurement system (Solar Cell Scan 100, Zolix, China).

Fig. 1. (a) Schematic illustration of the PSCs investigated in this work; (b) SEM image of the prepared perovskite layer; (c) AFM height image of the prepared perovskite layer;
(d) UV–vis absorption spectrum of the prepared perovskite layer.
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