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a b s t r a c t

The presence of sinks-traps at the nodes of a 1D chain disturbs coherency of propagation of a quantum
particle in the chain. This results in nontrivial dependences of the quantum yield of capture on the trap
intensity and initial placement of the particle. We obtain these dependences in the cases of infinite, semi-
infinite, and finite chains with one or two traps.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The 1D chain of nodes interacting with nearest neighbours is a
basic theoretical tool and proving ground for countless models of a
huge variety of physical processes, especially transport ones. Their
main features, either in classical or quantum cases, are well known.
Nevertheless, some of them, being of both academic and practical
importance, still have not received proper attention. Here we ana-
lyze one of the kind: peculiarities of the quantum yield of capture
of a quantum particle migrating in a regular 1D chain with traps.
The set of models considered below includes those containing
one or two traps in an infinite, semi-infinite and finite chain. The
latter, in particular, is closely related to the popular problem of
donor-acceptor transfer via intermediate states and to the trade-
off between so-called hopping/activation and superexchange/tun-
nel mechanisms of the transfer (see e.g. [1–3]). As shown in [4],
under the condition of weak population of the chain-mediator
the effective donor-acceptor transfer rate can be expressed pre-
cisely through such quantum yields.

Introducing even a single chain irregularity (here trap or chain
edge) immediately makes the dynamics/kinetics of the particle
migration complicated. On the contrary, the quantum yields can
be exactly calculated in an elegant fashion, leading to sometimes
not so obvious results. Below we describe them, starting from a
demonstrative comparison between classic and quantum
migration in an infinite chain.

2. Polya’s theorem and quantum migration (infinite chain)

Consider the standard skeleton of diffusion models, the
drunkard’s walk problem (Fig. 1, top).

According to Polya’s recurrence theorem [5], the wandering
particle always returns to the origin (this remains to be true for a
2D lattice, while the walk becomes transient in three or more
dimensions).

There are many ways to prove Polya’s theorem. In particular,
Montroll [6] reduced the question of recurrence to the divergence
of the following integral:

U1ð1Þ ¼
X1
t¼0

Ptðn ¼ 0Þ ¼ 1
p

Z p

0

du
1� cosu

; ð1Þ

where Ptðn ¼ 0Þ is the probability of the particle to occur at the ori-
gin after t jumps. The obvious divergence of (1) means that the walk
is recurrent [6]. Attaching now the meaning of continuous time to t,
one arrives at the diffusion analog of the Polya’s problem with the
balance evolution equation dpn=dt ¼ jðpn�1 � 2pn þ pnþ1Þ, where
pnðtÞ’s (now playing the part of PtðnÞ’s) are diagonal elements of
the density matrix and j is ’rate constant’ of jumping. It’s easy to

show that pð0Þ
n ðsÞ ¼ expð�sÞIjnjðsÞ, where s ¼ 2jt, IjnjðsÞ is modified

Bessel function, and the upper index means the initial condition
pnð0Þ ¼ dn0. Of course, the recurrence requirement

R1
0 pnðtÞdt ¼ 1

holds in this case, too, and no escape to infinity takes place.
Now introduce a sink (trap) at node N (Fig. 1, bottom), so that the

evolution equation reads dqn=dt ¼ jðqn�1 � 2qn þ qnþ1Þ � vqndnN .

What is the quantum yield W ð0Þ
N ¼ v

R1
0 qð0Þ

N ðtÞdt of such a trap?
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To calculate it, it is sufficient to find the Laplace transform
~qNðsÞ ¼

R1
0 e�stqNðtÞ dt, as WN ¼ v~qNðsÞjs!0. One can easily show

that ~qnðsÞ ¼ ~pnðsÞ � v~pðNÞ
n ðsÞ~qNðsÞ, and

W ð0Þ
N ¼ v~pð0Þ

N ðsÞ
1þ v~pðNÞ

N ðsÞ
js!0: ð2Þ

Using the known Laplace transform ~IjnjðsÞ [7] in (2), we conclude

that W ð0Þ
N � 1. In other words, irrespective of v or N, the particle

always leaves the chain. Of course, it is a direct consequence of
Polya’s theorem. But what will happen in the quantum case?

Behind the latter, we mean that the schemes in Fig. 1 remain
the same but the exchange between adjacent nodes is realized
due to exchange matrix elements L’s. As for sink v, it can be repre-
sented by an imaginary addition to the energy at node N. This
allows us to remain within the Schrödinger equation (albeit with
non-hermithian Hamiltonian), avoiding bulkier density matrix for-
malism without any loss of correctness. Thus, the Hamiltonian to
the scheme in Fig. 1, bottom reads

H ¼ H0 � ðiv=2Þ Nj i Nh j; ð3Þ
where H0 ¼ L

P1
�1ð nj i nþ 1h j þ nþ 1j i nh jÞ corresponds to the

scheme in Fig. 1, and the node energies en’s are assumed equal to
zero. The wave function WðtÞj i ¼ P

nCnðtÞ nj i has the initial condi-
tion Wðt ¼ 0Þj i ¼ 0j i, or Cnð0Þ ¼ dn0, whereas the function
wðtÞj i ¼ P

ncnðtÞ nj i satisfies the Schrödinger equation
d wj i=dt ¼ �iH0 wj i (�h ¼ 1). In terms of c n’s, the latter reads

dcn=dt ¼ �iLðcn�1 þ cnþ1Þ: ð4Þ
Replacements cn ¼ ð�iÞnbn (the same will be used below for Cn ’s,
too) and s ¼ 2Lt reduce Eq. (4) to 2dbmðsÞ=ds ¼ bm�1ðsÞ � bmþ1ðsÞ
which is the canonical relationship for Bessel functions JmðsÞ, so
we arrive at the known solution to set (4) with initial condition
bmð0Þ ¼ dm0, precisely, cmðtÞ ¼ ð�iÞmJmð2LtÞ. Note that the integrals

of the node probabilities
R1
0 jcmðtÞj2dt are obviously divergent. By

analogy with the previous case, it should mean that the quantum
particle would be never ’lost in infinity’, too. Let us address, how-
ever, the quantum yield from this chain in the presence of the trap.

The Schrödinger equation corresponding to Hamiltonian (3)
reads

d WðtÞj i=d t ¼ �iH0 WðtÞj i � ðv=2ÞCNðtÞ Nj i ð5Þ
and can be re-written, in dimensionless variables, in the equivalent
integral form:

WðsÞj i ¼ wðsÞj i � a
Z s

0
CNðhÞ wðNÞðs� hÞ�� E

dh; ð6Þ

where a ¼ v=4L, and, as earlier, the upper index labels the initial

condition, wðNÞð0Þ�� E
¼ Nj i. The identity of Eqs. (5) and (6) can be

immediately verified by substituting (6) in (5) and differentiating
the integral with the use of Leibniz’s rule. Then one can easily
obtain in Laplace transforms with respect to s:

~Cð0Þ
N ðsÞ ¼ ð�iÞN~Bð0Þ

N ðsÞ ¼ ð�iÞN
~bð0Þ
N ðsÞ

1þ a~bðNÞ
N ðsÞ

¼ ð�iÞN
~JNðsÞ

1þ a~J0ðsÞ
; ð7Þ

where ~JmðsÞ ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

p � sÞm= ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

p ðm P 0Þ [7], and ~J�m ¼
ð�1Þm~Jm. As all the functions of time considered here satisfy the

condition f ðt < 0Þ ¼ 0, their Fourier transforms ~f ðxÞ can be

found simply by replacing s ! ix in ~f ðsÞ, and the sought quantum
yield is:

W ð0Þ
N ¼ v

Z 1

0
jBð0Þ

N ðtÞj2dt ¼ v
2L

Z 1

0
jBð0Þ

N ðsÞj2ds

¼ a
p

Z 1

�1
j~Bð0Þ

N ðxÞj2dx: ð8Þ

With the use of Eq. (7) we finally get:

W ð0Þ
N ðaÞ ¼ ð2a=pÞðA1 þ A2Þ;

A1 ¼
Z 1

0
dxð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
þ aÞ�2

;

A2 ¼
Z 1

1
ðx�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
Þ2Nðx2 þ a2 � 1Þ�1

dx:

ð9Þ

For N ¼ 0;1;1 the integrals in (9) can be written in elementary
functions in a rather compact form omitted here for the sake of
brevity. Instead, we present the corresponding plots in Fig. 2.

They illustrate a sharp distinction from the classical case. Now

W ð0Þ
N is always less than 1 for any v > 0 and N (except the obvious

case of an infinitely intensive trap at the initial node, i.e.
v ¼ 1; N ¼ 0). In other words, there always exists a finite proba-
bility of the particle to be irreversibly lost in the chain (go off to
infinity). Moreover, for any N > 0 the greater v, the eventually less

W ð0Þ
N . That is, increasing intensity of the trap makes its capture abil-

ity only worse, so that in the limit v! 1 the trap rather turns into
a wall, blocking particle’s return and capture.

Seeing such a nontrivial dependence W ð0Þ
N on v and N, it is nat-

ural to add one more trap into consideration. Let the traps be iden-
tical, v1 ¼ v2 ¼ v for simplicity, and situated at nodes N1 and
N2ðN1 < N2Þ, so that

H ¼ H0 � ðiv=2Þð N1j i N1h j þ N2j i N2h jÞ:
Then the procedure described above leads to the following ana-

logs to Eq. (7):

~Bðn0Þ
N1

ðsÞ ¼
~JN1�n0 ð1þ a~J0Þ � að�1ÞN2�N1~JN2�N1

~JN2�n0

ð1þ a~J0Þ2 � ð�1ÞN2�N1a2~J2N2�N1

~Bðn0Þ
N2

ðsÞ ¼
~JN2�n0 ð1þ a~J0Þ � a~JN2�N1

~JN1�n0

ð1þ a~J0Þ2 � ð�1ÞN2�N1a2~J2N2�N1

;

ð10Þ

and the total quantum yield is now W ðn0Þ ¼ Wðn0Þ
N1

þW ðn0Þ
N2

, with the

recipe (8) for computing W ðn0Þ
N1;2

. As earlier, the type of the curve

W ðn0ÞðaÞ is critically dependent on the initial condition n0 with three
essentially different options: (i) n0 ¼ N1 or N2, (ii) n0 < N1;N2 or
n0 > N1;N2, and finally (iii) N1 < n0 < N2. It is clear that the first
two result in the dependences which resemble those already shown
in Fig. 2: in case (i) W ðn0Þða ! 1Þ ! 1 (we henceforth refer such a
dependence as of type I), whereas in case (ii) W ðn0Þða ! 1Þ ! 0
(type II), see curves 1, 2 in Fig. 3.

To see what happens in case (iii), i.e. when the particle is ini-
tially placed between the traps, consider the simplest version:
N1 ¼ �1; n0 ¼ 0; N2 ¼ 1. From (10) it then follows that
~Bð0Þ
1 ¼ �~Bð0Þ

�1 ¼ ~J1
1það~J0�~J2Þ

, and the use of Eq. (8) leads to the curve 3

in Fig. 4, that is of type I again (no escape to infinity in the limit
a ! 1). ’Asymmetrical’ initial conditions (like e.g.

0

1-2

0

N-n

χ

1

-1 2

-1 2-2 n-n

Fig. 1. Top: the particle starts jumping from the origin to one of the two neighbour
nodes with equal probability ½. Bottom: at node N the particle could be irreversibly
captured by the trap of intensity v.
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