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a b s t r a c t

The finite field method was used to calculate the static first and second hyperpolarizabilities (b and c) for
organic molecules. The dependence of b and c on the applied electric field strength was investigated and
used to determine the optimal field strength for each individual molecule. For c, we designed a protocol
that uses the maximum atomic distance within the molecule along the direction of the applied field to
estimate optimal field strengths. However, b is nearly independent of the descriptors we considered,
and largely depends on the composition (e.g., the presence of certain functional groups) of the molecule.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The finite field (FF) method is a standard technique in quantum
chemistry for calculating electric response properties of molecules
like the static dipole polarizabilities (a) and higher order deriva-
tives thereof (e.g., the first and second hyperpolarizabilities, b
and c) [1–4]. The main advantage of the FF method is its low com-
putational cost and ease of implementation, compared to other
approaches like the sum over states formalism, coupled-
perturbed Hartree-Fock, or response theory (RT) [5,6]. Whereas
these methods need additional information such as analytical gra-
dients or excited state information, the FF method simply requires
the calculation of the electronic energy in the presence of various
external electric fields [7]. As such it is usually the method of
choice for newly developed theories, but also for high level ab initio
correlated calculations.

However, there are also serious drawbacks of the FF method,
the most crucial being the dependence of the result on the initially
chosen field strength F. The higher order derivatives, b and c, are
especially sensitive quantities, with a rather narrow range of suit-
able field strengths. This sensitivity arises because the FF method is
effectively a way of numerically differentiating the energy of a

molecule with respect to the magnitude of the electric field, and
as such suffers from finite-precision artifacts when the value of F
is too small. On the other hand, if one chooses a value of F that is
too large the higher-order derivatives become nonnegligible and
contaminate the lower-order derivatives of interest. Worse, after
a certain critical field strength has been passed, a field-induced
state inversion, where an excited state at zero-field becomes lower
in energy than the ground state occurs [8]. The first effect can be
mitigated using Richardson extrapolation, which combines calcu-
lations at several different field strengths in order to reduce the
finite difference error [9,10]. This procedure has been successfully
applied in the literature [11–13].

In a recent article, we illustrated how to maximize the benefits
of such refinement procedures [14]. Using Richardson extrapola-
tion, significant improvements of the precision are obtained when
the applied field strengths follow a geometric progression with a
common ratio smaller than two [15]. Another finding is that the
precision only benefits from the first one or two steps of iterative
Richardson refinement. Subsequent Richardson steps lead to an
accumulation of numerical noise.

An open question so far is, how an optimal field strength, Fopt,
which is the field strength that corresponds to the minimum rela-
tive error of the calculated FF quantity, should be chosen for a par-
ticular molecule. It is clear that molecules of different size and
shape react differently to the applied external electric field. Intu-
itively, one can understand that large and extended molecules
are exposed to much higher potential changes when placed in an
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external field and thus are expected to have a much smaller Fopt
than small molecules. Similarly, it is conceivable that molecules
of the same size, but different electronic structure (e.g., saturated
vs. conjugated hydrocarbon chains) might have very different
optimal field strengths. The purpose of this study is to find
correlations between the optimal field strength and other
molecule-specific descriptors that allow one to make straightfor-
ward, a priori, predictions for Fopt. This is important because it
allows one to avoid the (computer) time-consuming search for
the optimal field strength.

2. Methodology and computational details

2.1. Finite field method

The energy E of a molecule for a small external homogenous
electric field F can be approximated with a McLaurin series,
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where l and a denote the dipole moment and the dipole polariz-
ability, respectively. The higher-order nonlinear responses are the
first hyperpolarizability (b) and the second hyperpolarizability (c).

Eq. (2) can be split into even and odd powers of F, which leads to
symmetric and antisymmetric combinations of energies at equal
positive and negative field strength
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This allows the polarizabilities and the even-order hyperpolarizabil-
ities to be treated separately from the dipole moment and the odd-
order hyperpolarizabilities. By rearranging Eqs. (3) and (4), the
dipole moment (l) and polarizability (a) can be obtained directly as
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If F is chosen small enough, Eqs. (5) and (6) are good estimate for l
and a, respectively.

To evaluate b and c, l and a have to be eliminated from Eqs. (5)
and (6), respectively. This can be achieved if the energy is known at
two different field strengths, e.g., F and 2F, besides the energy at
zero field
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More generally, for any two values of field strengths (say F and xF),
Eqs. (7) and (8) can be generalized to
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The common practice to work with field strengths F and 2F cor-
responds to the choice x = 2 in Eq. (10) [16,17]. However, in a
recent study we showed that using x < 2 improves the accuracy
of FF calculations because it allows for more points lying in the
acceptable region of field strengths [14]. Motivated by the results
of that study, we always use x =

ffiffiffi
2

p
in our calculations of c. Eq.

(10) then simplifies to
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For b, we use x ¼
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p
. Eq. (9) becomes
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2.2. Error reduction

The scaling of the error in Eqs. (7) and (8) can be lifted to a
higher order by Richardson extrapolation [9]. This method is
widely applied to improve the precision of FF quantities by reduc-
ing the error from truncating the Taylor expansion, and it is known
to improve the precision of the higher order derivatives b and c in
the first few iterations. A detailed description of the recursive
Richardson extrapolation can be found in Ref. [14]. Based on these
results, we use at most two iterations of refinement (m = 0, 1, 2).
Eq. (11) corresponds to the unrefined cm=0 case. Combining two
or three instances of cm=0 with adjusted fields, we obtain
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For b, we use only one step of Richardson extrapolation and x ¼
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2.3. Electronic structure calculations

For each molecule a geometry optimization was performed
using the Gaussian 09 program [18], using the long-range cor-
rected hybrid density functional CAM-B3LYP [19–24], which was
proven to produce accurate molecular geometries [25,26], with a
6-31G(d) basis set [27–30].

All calculations of the response and finite field properties were
done with the DALTON quantum chemistry program using the
aforementioned optimized geometries [31]. The level of theory
was HF/6-31G(d), which is known to supersede DFT polarizabilities
in some respects [12,16,17]. We used the natural population
analysis method to calculate atomic charges using HF/6-31G(d).
As our primary interest is developing methods for FF calculations,
rather than actually computing accurate hyperpolarizabilities, the
level of theory is relatively unimportant to our study. It is
more important that (a) reference hyperpolarizabilities are avail-
able from response theory and (b) the method is fast enough to
allow us to thoroughly explore different FF approaches. The
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