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a b s t r a c t

We present a new second order complete active space self-consistent field implementation to converge
wavefunctions for both large active spaces and large atomic orbital (AO) bases. Our algorithm decouples
the active space wavefunction solver from the orbital optimization in the microiterations, and thus may
be easily combined with various modern active space solvers. We also introduce efficient approximate
orbital gradient and Hessian updates, and step size determination. We demonstrate its capabilities by cal-
culating the low-lying states of the Fe(II)-porphine complex with modest resources using a density
matrix renormalization group solver in a CAS(22,27) active space and a 3000 AO basis.

� 2017 Published by Elsevier B.V.

1. Introduction

Multiconfigurational electronic structure is widely found across
chemistry [1]. The complete active space self-consistent field
(CASSCF) is a standard tool to describe multiconfigurational elec-
tronic structure problems [1,2]. The CASSCF wavefunction further
forms the starting point for more accurate treatments, including
multireference perturbation theory and configuration interaction
methods [3]. Because of its importance, much effort has been
devoted to efficient CASSCF algorithms in the last decades [4–16].

A well-known numerical challenge in CASSCF is to converge the
self-consistent wavefunction. For this reason, many early investi-
gations focused on second order optimization techniques, which
demonstrate superior convergence to pure gradient or super-CI
formulations [4,5,7,8,6,9–11]. Unfortunately, these early imple-
mentations were optimized for modest AO basis sets, because they
transformed the integrals to the current set of CASSCF orbitals in
each iteration, incurring significant computational cost and ON4

disk storage. To extend CASSCF algorithms to large AO bases, sev-
eral strategies have been explored [12–15]. For example, density-
fitted CASSCF [12,13] and Cholesky decomposition CASSCF [14]
both approximate the AO integrals to achieve significant savings
in the integral transformation cost and disk storage. GPU-based
AO-driven CASSCF implementations [15,17] further can handle
very large numbers of AO functions, although these have not yet
been extended to second order optimization. Although AO-driven

algorithms typically require more floating point operations than
MO-driven approaches, they are favourable for modern computers,
due to their low IO and communication costs. In this work, our first
motivation is to present a new AO-driven algorithm that can han-
dle large AO basis sets without integral approximations, and also
provide second order convergence. Our algorithm may easily be
combined with density-fitting or Cholesky decomposition,
although this is not a focus of this paper.

A second motivation is associated with the need to extend tra-
ditional CASSCF implementations to larger active spaces. In tradi-
tional CASSCF, full configuration interaction (FCI) is used as the
active space solver. However, due to the exponential scaling of
FCI, it is limited to small complete active spaces (CAS), usually no
more than CAS(16,16) (16 electrons in 16 orbitals). However, there
are now several techniques which can be used to replace the FCI
solver [18–23]. Two of the more commonly used ones are the den-
sity matrix renormalization group (DMRG) [18] and full configura-
tion interaction quantumMonte Carlo (FCIQMC) [20,21]. These can
handle correlated active spaces with many tens of orbitals, and in
some cases even more [19]. While implementations of DMRG and
FCIQMC in the CASSCF algorithm exist [24–31] they do not yet
simultaneously provide second order convergence and the ability
to treat very large numbers (i.e. 1000s) of AO’s. The implementa-
tion we present can be straightforwardly interfaced to any external
active space solver and thus fills this gap. In the current work, we
will use FCI and DMRG as the active space solvers. (An earlier
FCIQMC-CASSCF calculation, reported in Ref. 29, used the two-
step version of our implementation that we describe here).
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In Section 2, we describe the formulation of our CASSCF algo-
rithm, including the approximate orbital gradient and Hessian
updates, and orbital optimization method. In Section 3 we carefully
study the convergence properties and performance of our algo-
rithm for several benchmark molecules, within our open-source
program package PySCF [32]. Finally, as an example of a more chal-
lenging large scale problem, we use FCI and DMRG active space sol-
vers and our CASSCF implementation to converge the Fe(II)-
porphine singlet, triplet and quintet ground states. Our largest cal-
culation uses a 22 electron, 27 orbital active space and almost 3000
AO basis functions.

2. Algorithm

2.1. Theory

In this section, we first summarize the relevant formulae for the
optimization of the CASSCF wavefunction. Given the spin-free elec-
tronic Hamiltonian,

H ¼
X
ij

hijE
i
j þ

1
2

X
ijkl

ðijjklÞðEi
jE

k
l � djkE

i
lÞ ð1Þ
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j ¼ ayiaaja þ ayibajb ð2Þ

the CASSCF energy can be written as a function of the CI coefficients
c and the unitary orbital transformation matrix U,

E ¼ HijklCijkl ð3Þ
Hijkl ¼ VijklUpiUqjUrkUsl ð4Þ

Vpqrs ¼ 1
2ðNe � 1Þhpqdrs þ 1
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lÞjJicIcJ ð6Þ

where the Einstein summation convention is implied. Defining a
Lagrangian with normalization constraints for c and U,

FðR; cÞ ¼ EðR;CÞ � Eðcyc� 1Þ ð7Þ
U ¼ expðRÞ ð8Þ
R ¼ �Ry ð9Þ
minimizing the energy is a non-linear optimization problem for R; c,
where the stationary conditions are

@F
@cI

¼ 0 ð10Þ
@F
@Rpq

¼ 0 ð11Þ

Because the energy is quadratic in the CI coefficients, the CI
coefficients, holding the orbitals fixed, can be obtained by solving
the standard CI eigenvalue problem

hIjðH � EÞjJicJ ¼ 0 ð12Þ
A Newton step for the orbitals, holding the CI coefficients fixed,

corresponds to solving the equations

HooR1 þ Go ¼ 0 ð13Þ

Go
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The simplest approach to CASSCF optimization is to alternately
solve (12) and (13) for the CI coefficients and for the orbitals. This
simple alternating scheme is known as the two-step optimization
method. Unfortunately, even when the Newton steps are carried
out exactly, for example, by using the exact orbital Hessian in Eq.

(13), the two-step method suffers from slow convergence due to
the neglect of coupling between the CI and orbital optimization
problems. It is thus not usually considered a true second order con-
vergent algorithm.

The more sophisticated, one-step, optimization methods aim to
approximate the joint CI displacement and orbital Newton steps,
corresponding to solving

Hcc Hco

Hoc Hoo
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where the Hessian matrices are

Hcc
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Here, the first row of the coupled Eq. (16)

Hccc1 þHcoR1 þ Gc ¼ 0 ð19Þ
can be rewritten as a CI response problem

H0c1 þHRc0 ¼ E0c1 ð20Þ
since

ðHcoR1ÞI ¼ 2HR
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where the first order Hamiltonian HR is obtained from the chain rule
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The second row of Eq. (16)

HooR1 þHocc1 þ Go ¼ 0 ð24Þ
can be interpreted as the orbital Newton problem with dressed
gradients

HooR1 ¼ �~Go ð25Þ
~Go
pq ¼ Go
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The CI coefficient and orbital optimization problems are thus
coupled through the first order HR in Eq. (20) and the first order
2-particle density matrix C1 in Eq. (25).

In principle, in the one-step method, the true CI displacement
requires solving the response Eq. (20) exactly. This is how some
early versions of one-step optimization in CASSCF were imple-
mented. However, if an iterative procedure is used to determine
the CI eigenstate in Eq. (12), then a single (or few) steps of the same
iterative procedure, with the modified Hamiltonian H0 þHR and
initial eigenstate guess of c0, can be used to determine an approx-
imate c1. For example, a single Davidson iteration [33] with these
quantities yields

c1 � �½diagðH0 � E0Þ��1
HRc0 ð28Þ

as an approximate solution of Eq. (20). The well-known MCSCF
implementation by Werner and Knowles [8], uses this type of
approximation. In our implementation, we also use a few iterations
of the active space solver to determine an approximate update c1.
The first order 2-particle density matrix is then computed by finite
difference
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