
Algorithmic and software techniques for embedded vision on
programmable processors

Branislav Kisačanin a,�, Zoran Nikolić b

a Texas Instruments, Inc., Dallas, TX, USA
b Texas Instruments, Inc., Houston, TX, USA

a r t i c l e i n f o

Article history:

Received 19 November 2009

Accepted 24 February 2010

Keywords:

Real-time

Embedded

Vision

Programmable

DSP

a b s t r a c t

In the last few years, programmable architectures centered around high-end DSP

processors have emerged as the platform of choice for high-volume embedded vision

applications, such as automotive safety and video surveillance. Their programmability

inherently addresses the problems presented by the sheer diversity of vision algorithms.

This paper provides an overview of high-impact algorithmic and software techniques

for embedded vision applications implemented on programmable architectures and

discusses several system-level issues. We provide a general discussion and practical

examples for the following categories of algorithmic techniques: fast algorithms,

reduced dimensionality and mathematical shortcuts. Additionally, we discuss the

importance of software techniques such as the use of fixed-point arithmetic, reduced

data transfers and cache-friendly programming. In our experience, each of these

techniques is a key enabler for real-time embedded vision systems.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

This paper is an overview of high-impact algorithmic
and software techniques we learned and discovered
over years of developing embedded vision systems on
programmable processors. While most of our experience
has been with TI digital media processors, the techniques
we present are general and applicable to other similar
architectures.

1.1. Embedded vision

As the first decade of the 21st century is coming to a
close, we can confidently say that computer vision has
entered the mainstream in consumer applications. As
far as we know, the first vision-based system to be
introduced to the consumer market was the optical

mouse. While the early models of the 1980s required
specially patterned mouse pads, the more modern
versions, developed in the late 1990s, were based on
optical flow (as described by Horn [13]) and did not
require special mouse pads. This major step forward was
facilitated by advances in algorithms and VLSI technology,
allowing for an embedded implementation of the optical
flow algorithm.

The introduction of the optical mouse to the consumer
market was soon followed by the EyeToy, an attachment
to the PlayStation 2 game console, comprising a camera
and computer vision software, allowing gamers to visually
become a part of the game. Today, we are witnessing a
growing number of consumer products based on vision,
especially in the automotive safety and video surveillance
domains, with new toys, domestic robots and medical and
mobile devices on the horizon.

Very much like computer vision applications for
industrial inspection got a special name—machine vision,
these recent applications of computer vision in safety,
security, entertainment, medicine and mobility are now
commonly called embedded vision.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/image

Signal Processing: Image Communication

ARTICLE IN PRESS

0923-5965/$ - see front matter & 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.image.2010.02.003

� Corresponding author.

E-mail addresses: b.kisacanin@ti.com (B. Kisačanin), nikolicz@ti.com

(Z. Nikolić).

Signal Processing: Image Communication 25 (2010) 352–362

www.elsevier.com/locate/image
dx.doi.org/10.1016/j.image.2010.02.003
mailto:b.kisacanin@ti.com
mailto:nikolicz@ti.com
mailto:nikolicz@ti.com


1.2. Is there an optimal vision processing architecture?

Much research effort has been dedicated to elucidating
the optimal processing platform for computer vision. As
documented by a 1992 special issue of IEEE Computer [4],
many researchers and developers optimized the architec-
ture for their algorithms and systems, while keeping them
as general as their application allowed. One of the lessons
of this experience has been that the architectures are
highly application-specific.

For example, one-of-a-kind systems for many research
projects often did not have to optimize for size, weight
and power consumption because their primary objective
was performance. Such projects could afford powerful
workstation computers and even specially built hardware
for the most challenging vision blocks. At the other end of
the spectrum, in consumer products, where the priorities
are quite different, we find that the optical flow for the
optical mouse has been implemented on an ASIC
(application specific integrated circuit), a decision justi-
fied by the huge number of products.

This example illustrates how the specifics of the
product can dominate the architecture decision process
and sometimes even mandate the answer. Thus, the
prospect of a universally optimal vision architecture
remains open. Yet the question of which platform is
‘‘optimal’’ for a particular application is still of immediate
importance. Unless there are circumstances mandating
the architecture choice, such as the extremely high
volume of the optical mouse, one needs to consider the
available choices and weigh them against the market
requirements.

1.3. The challenges of embedded vision

While specific requirements vary between embedded
vision systems, there are several common problems to be
solved before prototypes can become consumer products.
Sidestepping the ‘‘intangible obstacles,’’ discussed by Chai
[24, Chapter 11], that are major factors influencing
technology penetration into the consumer world, we
focus here on the following technological problems:

� Algorithm diversity. Vision algorithms are extremely
diverse and not standardized. While textbook descrip-
tions of algorithms are a good starting point, devel-
opers often find it necessary to make algorithmic
changes specific to their system.
� Data bandwidth. Large data sets (images and video

streams) need to be transferred. Data transfers in
embedded vision are mostly on the input side, but
sometimes also on the output side, in applications in
which the user needs to see the output.
� Processing latency. Images and video need to be

processed in real-time, often using highly pixel-
intensive algorithms.
� Product scalability. Consumer products often have a

varying selection of features, defining different product
levels, each offering a superset of the features found in
the lower product levels.

� Cost. Consumer products are sensitive to the system
cost.
� Energy. Consumer products are also sensitive to energy

issues (power dissipation and heat management).

1.4. Comparison of software- and hardware-programmable

approaches

Embedded vision developers often find their applica-
tions to be between the extreme cases of one-of-a-kind
systems that can be implemented on workstations and
high-volume products like optical mouse, that can be
implemented as ASICs. In such cases the developers
have a number of options to choose from, as discussed
by Kölsch and Butner [24, Chapter 1]. Our experience
shows that in cases in which a large number of
different algorithms is employed, with each running for
a relatively short time, the software programmable
architectures have advantage over the hardware pro-
grammable approaches. In this paper we look at software
programmable architectures and describe techniques
at three different levels: algorithmic, software and
system.

1.5. Programmable architectures for embedded vision

In the following we consider general properties of
programmable architectures that make them a good
answer to the challenges of embedded vision. In the rest
of this paper we assume a very basic model, depicted in
Fig. 1, consisting of a processor and external RAM
(random access memory). The processor itself comprises
a CPU (central processing unit), DMA (direct memory
access) controller and internal RAM. A part or all of the
internal memory can be configured as cache.

The external memory is much slower than the internal
memory, so for imaging and vision algorithms that access
the data in rectangular blocks, it is beneficial to use dual
buffering. In dual buffering the DMA controller is used to
transfer the data between external and internal RAM,
while the CPU processes the data previously transferred
by the DMA controller to another buffer in the internal
RAM. For other algorithms that have less regular data
accesses, it is beneficial to use the cache memory, which
predictively loads the data from the external memory.
When cache is successful in predicting the data access
patterns, the data access latency is closer to that of the
faster internal memory than to that of the slower external
memory.

Programmable architectures centered around high-end
DSP (digital signal processing) processors are often the
platform of choice for embedded vision. They are often
VLIW (very long instruction word) architectures, which
means that they consist of multiple execution units that
can be pipelined for maximum parallelism. Additionally,
some of these execution units have SIMD (single instruc-
tion multiple data) extensions, for example a 32-bit
multiplier can be used to do four 8-bit multiplications
simultaneously. With these and other desirable features,

ARTICLE IN PRESS

B. Kisačanin, Z. Nikolić / Signal Processing: Image Communication 25 (2010) 352–362 353



Download English Version:

https://daneshyari.com/en/article/537778

Download Persian Version:

https://daneshyari.com/article/537778

Daneshyari.com

https://daneshyari.com/en/article/537778
https://daneshyari.com/article/537778
https://daneshyari.com

