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a b s t r a c t

First-principles molecular dynamics has been applied to inquire into the melting behaviors of n-atom
(n ¼ 6;10) graphene quantum dots (GQD6 and zigzag GQD10) within the temperature range of
T = 0–500 K. The temperature dependence of the geometry of each quantum dot is thoroughly evaluated
via calculating the related shape deformation parameters and the eigenvalues of the quadrupole tensors.
Examining the variations of some phase-transition indicators such as root-mean-square bond length fluc-
tuations and mean square displacements broadly proposes the value of Tm ¼ 70 K for the melting point of
GQD6 while a continuous, two-stage phase transition has been concluded for zigzag GQD10.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decade, much studies have been focused on differ-
ent, intriguing properties of two-dimensional nanomaterials [1–8],
particularly on graphene because of spread spectrum of its applica-
tions in many diverse areas such as nanoelectronics, optoelectron-
ics, bioelectronics, etc. [9], leading to rapidly-accumulating
literature in the realm of low-dimensional systems as well. It has
demonstrated excellent electronic, mechanical and optical charac-
teristics including ultrahigh mobility, outstanding flexibility and
stability, excellent thermal conductivity (5000Wm�1 K�1), high
transmittance within the visible infrared region, exceptional
room-temperature electron mobility (2.5 � 105 cm2 V�1 s�1), large
specific surface area (2630 m2 g�1), a Young’s modulus of about 1
TPa and intrinsic strength of 130 GPa [10–15]. Enjoying outstand-
ing electrical conductivity, optical transparency, mechanical flexi-
bility, and two-dimensionality has made it a promising candidate
for transparent and conductive electrodes [16]. Unlike conven-
tional metal electrodes, graphene has the advantage that its Fermi
level, and therefore, its workfunction could be tailored by chemical
doping or electrostatic gating [17,18], making it to be of great use
in device applications such as high-efficiency chemically-doped
solar cells and gate-controlled variable Schottky barrier devices
[19,20]. It has also an optical absorption of about pa � 2:3% in
the infrared limit (with a the fine-structure constant), complete
impermeability to any gases, and the ability to sustain extremely
high densities of electric current (a million times larger than

copper) [15]. It is a basic building block for graphitic materials of
all dimensionalities, being wrapped into zero-dimensional fuller-
ene or quantum dots, rolled into one-dimensional nanotubes, or
stacked into three-dimensional graphite.

The technological drive for making electronic devices continu-
ously smaller has some interesting consequences: it is now rou-
tinely possible to make small electron boxes in solid-state
devices, containing an integer number of conduction electrons
[21]. Such devices are usually operated as transistors via field-
effect gates, called single-electron transistors. In semiconductor
boxes, the number of trapped electrons could be reduced to zero,
one, two, etc. Such semiconductor single-electron transistors are
called quantum dots. Graphene quantum dots (GQDs) are zero-
dimensional graphene nanoparticles with confined electrons in
all the three spatial dimensions leading to quantization of their
spectrum. They have excellent optical properties and biosecurity,
exhibiting remarkable prospects in biomedical fields such as cell
imaging and biosensors [22], also leading to state-of-the-art dis-
play technologies such as quantum dot light-emitting devices
(QD-LED) [23].

In spite of the broad literature aforementioned, limited studies
have been focused on GQDs in terms of thermodynamics. The ther-
modynamic properties of such systems could be of great impor-
tance particularly when they are tunnel-coupled to source and
drain in transistors. Indeed, the need to meet the ever-increasing
demand on making electronic devices much smaller in size–play-
ing a vital role in many different areas such as nanotechnology
and nanomedicine as well–could uncover the importance of such
nanostructures. In the light of applying finite-temperature ab initio
molecular dynamics computer simulations [24–27]–which has
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made significant contribution to much of our understanding of
condensed-matter systems together with electronic-structure cal-
culations based on density-functional theory (DFT) [28]–therefore,
in the present work, the melting behaviors of n-atom (n ¼ 6;10)
graphene quantum dots (GQD6 and zigzag GQD10) are going to be
studied within the Car–Parrinello approach [29], allowing to sam-
ple thermal fluctuations by means of atomic trajectories generated
with DFT forces [30].

2. Computational details

The density-functional molecular dynamics (DFMD) method
introduced by Car and Parrinello has been applied to investigate
the finite-temperature behaviors of GQD6 and zigzag GQD10 via
adopting a self-consistent plane-wave pseudopotential approach
[32] as implemented in Quantum ESPRESSO integrated suite [33].
The generalized gradient approximation [34] proposed by Perdew,
Burke and Ernzerhof (PBE) [35] has been applied for the exchange
and correlation functionals. Effects of the atomic core (non-valence
electrons) have been described using a scalar-relativistic ultrasoft
pseudopotential [36,37] generated by Rappe-Rabe-Kaxiras-
Joannopoulos (RRKJ) pseudization method [38] with nonlinear core
correction [39], while the valence shell is considered to be 2s2p.
The electron density is augmented through a Fourier interpolation
scheme in real space [40]. For GQD6 and zigzag GQD10, respec-
tively, the kinetic energy cut-offs of about 60 and 65 Rydberg
(Ryd) for the wave functions, and 250 and 260 Ryd for the charge
densities and the potentials have been found to be enough to reach
energy convergence. Free cubic cells containing six atoms in a hon-
eycomb array (Fig. 1(a)), and ten atoms in a graphene-like zigzag
array (Fig. 1(b)) have been used under periodic boundary condi-
tions with vacuum spaces of about 15 Å along the three spatial
dimensions to decouple the weakest possible periodic interactions.
Fixed-cell relaxations based on the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) optimization method [41–43] have been applied
on the atomic positions to find the relaxed ones in a way that
the magnitude of each component of the total force on each atom
drops to less than 7.35 � 10�5 Ryd/Å. The forces in a Car–Parrinello
molecular dynamics (CPMD) calculation are the partial derivative
of the Kohn–Sham energy (EKS) with respect to the nuclear posi-
tions (RI) and the Kohn–Sham orbitals (Ui). The orbital forces are
calculated as the action of the Kohn–Sham Hamiltonian (HKS) on
the orbitals:

F Uið Þ ¼ �f iH
KS/i ¼ � dEKS

d/�
i

with ff ig integer occupation numbers, whereas the forces associ-
ated to the nuclear degrees of freedom could be expressed as

F RIð Þ ¼ � @EKS

@ RIð Þ
The corresponding Newtonian equations of motion for both

the orbitals and nuclear positions could be obtained by the
Car–Parrinello (CP) Lagrangian
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with �KS the extended Kohn–Sham energy functional, and MI the
ionic mass [44]. The fictitious electron mass (the inertia parameter
assigned to the orbital degrees of freedom, l) in the CP Lagrangian,
used to control the time evolution of the electronic degrees of free-
dom, is chosen to be 200 a.u. (200 times the mass of an electron)
with mass cut-off of about 2.5 Ryd for the Fourier acceleration effec-
tive mass in order to prevent the quality of the simulations to be
affected adversely and having minimized the electron drag effect.
The nuclei evolve in time at a certain, instantaneous physical tem-
perature / P

IMI
_R2
I . Although temperature is a collective effect and

is mainly intelligible in dealing with macroscopic systems including
large numbers of particles of the order of the Avogadro’s number,
the kinetic theory [45] providing a microscopic explanation of tem-
perature based on the movements of the constituent particles
enables DFMD simulations to apply temperature to few-particle
systems through the equipartition theorem [46],

T ¼ 2hEi
3NkB

with N the number of constituent atoms and kB the Boltzmann con-
stant. In the first CPMD simulations, respectively for GQD6 and zig-
zag GQD10, extended electronic minimizations of 480 and 725
femtoseconds (fs)–with time steps of about 0.19 and 1.45 fs to inte-
grate the electronic and nuclear equations of motions–with fixed
atoms and fixed cells are carried out in order to bring the electronic
systems (electronic wave functions) on their ground states relative
to the starting atomic configurations until the convergence of the
kinetic energies associated to the fictitious electronic dynamics to
a value less than 1� 10�7 Ryd, and the convergence of the total
energies to those obtained from self-consistent-field calculations
(�70.831 and �118.530 Ryd) are achieved. After having minimized
the electrons, the canonical (NVT) CPMD simulations restarting with
zero initial velocities are performed on nuclear degrees of freedom
at different temperatures using the standard Verlet algorithm

(a) GQD6 (b) zigzag GQD10

Fig. 1. Schematics of hypothetical transistors based on (a) GQD6 and (b) zigzag GQD10, tunnel-coupled to source and drain–visualized by XCrySDen [31].
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