Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier.com/locate/cattod

Titanium-promoted Au–Ti bimetallic nanoparticle catalysts for CO oxidation: A theoretical approach

Kihoon Bang, Kihyun Shin, Myung Shin Ryu, Soonho Kwon, Hyuck Mo Lee*

oxidation.

Department of Material Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea

ARTICLE INFO

ABSTRACT

Article history: Received 30 June 2015 Received in revised form 24 August 2015 Accepted 1 September 2015 Available online 3 November 2015

Keywords: CO oxidation Supported Au-Ti bimetallic nanoparticle Density functional thoery Reaction barrier

1. Introduction

Unlike inert property of bulk gold, gold nanoparticles (NPs) with size of a few nanometers supported on metal oxide (MO_x) supports show high catalytic activity for the oxidation of small molecules such as CO, even at temperatures below room temperature [1,2]. Since the discovery of the high catalytic activity of gold NPs, numerous studies have been performed to explain this high catalytic activity of gold NPs [3–8]. Although it has not yet fully understood, the interaction between NPs and MO_x is thought to be one of the key factors in the catalytic activity of gold NPs [7,9].

However, the gold NP/MO_x catalyst system has several critical problems that prevent its use as catalysts in CO oxidation. One of these problems is deactivation. The active sites of the system are easily poisoned by CO because of the relatively high adsorption energy of CO than of O_2 [10]. Furthermore, the weak interaction between NP and MO_x supports leads to the agglomeration or detachment of NPs [11]. Both phenomena decrease the activity of the catalyst. In addition, the cost for Au NP catalyst is quite high; Au is as expensive as other noble metals such as Pt, Pd, and Ag.

One way to solve the above mentioned problems is to use bimetallic catalysts [12–15]. Here, we propose the use of Au–Ti bimetallic NPs on a TiO_2 support. We chose Ti as the bimetallic component for the following reasons. First, bimetallic Ti–Pt NP

http://dx.doi.org/10.1016/j.cattod.2015.09.040 0920-5861/© 2015 Elsevier B.V. All rights reserved. catalysts showed low CO adsorption energy [16,17], which is the main factor in CO poisoning. In addition Ti is more abundant and cheaper than Au. Thus, Au–Ti bimetallic catalysts would be less costly than Au monometallic catalysts.

© 2015 Elsevier B.V. All rights reserved.

To solve the problems of deactivation of Au nanoparticle (NP) catalysts, we studied the catalytic activity of

10-atom Au-Ti bimetallic NPs on TiO₂ (110) supports for CO oxidation by means of density function the-

ory (DFT) calculation with DFT + U method. The calculations showed that Au-Ti NPs were more strongly

adsorbed on TiO₂ than Au monometallic NPs. The adsorption energy of O₂ was higher on Au–Ti NPs than

on Au NPs, leading to low CO poisoning. The reaction barrier for CO oxidation reaction at interfacial site was lower in the Au–Ti NP system. These results suggest that Au–Ti NPs are a promising catalyst for CO

In this report, we studied the catalytic activity of Au–Ti NP on TiO₂ support system for CO oxidation using density functional theory (DFT) calculations to establish whether the Au–Ti NPs are an applicable catalysts for CO oxidation catalysts. In Section 3.1, we performed DFT calculations on various structures of the NP/TiO₂ system and obtained the most stable structure. Using the final structure, we evaluated the adsorption properties of CO and O₂ molecules for CO oxidation in Section 3.2. Finally, we calculated the energy barrier of the reaction in Section 3.3. As a result, we evaluated the stability and catalytic activity of the Au–Ti bimetallic NP on TiO₂ support.

2. Computational details

Spin-polarized DFT calculations with plane-wave basis sets were carried out using the Vienna Ab initio Simulation package [18–20]. We used the generalized gradient approximation with the PW91 functional to describe the exchange-correlation energy of electrons [21]. Ionic cores were treated by the projector-augmented wave method [21,22]. The plane-wave cut-off was set to 400 eV and the convergence criteria for electronic structure and atomic geometry were 1.0×10^{-4} eV and 0.03 eV/Å, respectively.

To treat the highly localized Ti 3d orbitals, DFT+U method of Dudarev et al. [23] was applied. Using the scheme of Lutfalla's [24],

^{*} Corresponding author. Tel.: +82 42 350 3334; fax: +82 42 350 3310. *E-mail address:* hmlee@kaist.ac.kr (H.M. Lee).

Fig. 1. The effect of U_{eff} on reduction energy of TiO₂ to Ti₂O₃. Black dot is calculated energy, and red line is experimental energy. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the effective U value (U_{eff}) for titanium was calibrated by fitting the energy for the following reduction reaction of rutile TiO₂:

$$2\text{TiO}_2 + \text{H}_2 \rightarrow \text{Ti}_2\text{O}_3 + \text{H}_2\text{O} \tag{1}$$

The rectangular unit cell of bulk rutile TiO₂ is composed of two Ti atoms and four O atoms, and the hexagonal unit cell of Ti₂O₃ is composed of 12 titanium atoms and 18 oxygen atoms. We did geometry optimization and calculated energy for bulk TiO₂ and bulk Ti₂O₃ with a ($4 \times 4 \times 4$) Monkhorst-Pack grid and a ($2 \times 2 \times 2$) Γ -centered grid, respectively. The experimental reduction energy, 125 kJ/mol [24], is mostly matched for $U_{\rm eff}$ = 5.0 eV, as shown in Fig. 1. This value was used as the optimal $U_{\rm eff}$ value in later calculations.

To study catalytic properties, a rutile TiO₂ (110) support was modeled by a (4 × 2) surface unit cell with three tri-layers (O–Ti–O) and 20 Å of vacuum layers as shown in Fig. 2(a and b). The upper two tri-layers were fully relaxed by geometry optimization. Metal NP was prepared on the TiO₂ surface using 10 atoms of Au and Ti: Au₁₀, Au₉Ti₁, Au₈Ti₂, and Au₇Ti₃. A (2 × 2 × 1) Monkhorst-Pack grid *k*-point sampling was used to calculate the total energies of the systems.

The adsorption energy (E_{ads}) of adsorbate A on adsorbent B was calculated by following equation:

$$E_{\rm ads} = E_{\rm A-B} - E_{\rm A} - E_{\rm B} \tag{2}$$

where E_{A-B} is the total energy of the system where A is adsorbed on B, and E_A and E_B are the total energies of A and B each. The transition states (TS) of a CO oxidation reaction were determined with the climbing image nudged elastic band method [25,26].

3. Results and discussion

3.1. Structural stability and electric properties of Au–Ti NPs on TiO_2 support

To identify the stable structures of Au and Au–Ti NPs, we first attached various Au_{10} NP structures on TiO_2 support and relaxed using geometry optimization. We have tested pyramid-like, hemisphere-like, and cage-like initial structures, and the most stable structure was found to be the cage-like structure (Figs. Fig. 2 and 3(a)). From the stable Au_{10} structure, we substituted one of the Au atoms with Ti and again relaxed the structure to obtain the stable Au_9Ti_1 NP structure. The structures of Au_8Ti_2 and Au_7Ti_3 NPs were obtained in a similar fashion. The resulting structures were also cage-like structure, similar to that of the Au_{10} NP (Fig. 3(c and d)). For Au_9Ti_1 NPs, the substitution of Au with Ti in the second and third layers was more unstable than the substitution in the first layer by 1.57 eV and 3.14 eV, respectively. It implies that Ti tends to be close to TiO_2 and interacts strongly with it.

The tendency of interaction can be also seen from the adsorption energy of NPs on the TiO₂ support, as plotted in Fig. 3(b). As the number of Ti atoms in the NP increased, the adsorption energy of the NP became stronger due to the large interaction between Ti and TiO₂. These strong adsorption energies of Au–Ti bimetallic NPs would reduce the degrees of sintering or detachment of NPs from the support [27,28]; thus, Au–Ti NPs would have higher stability than Au monometallic NPs.

We performed Bader charge analysis [28,29] for metal NPs and TiO_2 support (Table 1). The upper two layers of bare TiO_2 support

Fig. 2. (a) Side view of our cage-like NP/TiO₂ model and (b) top view of TiO₂ (110) support. 1L_v, 1L_e, 2L, and 3L denote Au atom of 1st layer vertex, 1st layer edge site, 2nd layer, and 3rd layer in metal NP, respectively. Ti_{5c}, Ti_{6c}, O_{br}, and O_{pl} denote fivefold coordinated Ti, sixfold coordinated Ti, bridging O, and in-plane O, respectively.

Download English Version:

https://daneshyari.com/en/article/53780

Download Persian Version:

https://daneshyari.com/article/53780

Daneshyari.com