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Raman intensity and vibrational modes of armchair CNTs
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a b s t r a c t

Raman intensity changes and frequency patterns have been studied using the various armchair (n;n) to
understand the variations of bond polarizability, in regard to changing diameters, lengths, and the num-
ber of atoms in the (n;n). The Raman intensity trends of the (n;n) are validated by those of Cn isomers. For
frequency trends, similar frequency patterns and frequency inward shifts for the (n;n) are characterized.
Also, VDOS trends of the (n;n) expressing Raman modes are interpreted. The decomposition of vibrational
modes in the (n;n) into radial, longitudinal, and tangential mode is beneficially used to recognize the dis-
tinct characteristics of vibrational modes.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Carbon nanotubes (CNTs) have been characterized experimen-
tally and theoretically, since they were discovered [1]. To identify
the various properties such as electronic [2], vibrational [3], or
mechanical [4] properties of CNTs, many researches have been per-
formed. Theoretical approaches have been fulfilled to explore
vibrational characteristics of CNTs, for example, zone folding
model [5], force constant models [6,7], tight binding calculations
[8–10], and ab-initio calculations [11–16].

Among types of CNTs, all armchair (n;n) show a symmetric mir-
ror plane along the principal nanotube axis that we label the z
direction, and the (n;n) are known as achiral nanotubes [17]. With
a group theory, all the (n;n) display Raman active modes which are
A1g ; E1g , and E2g vibrational modes corresponding to {x2 + y2},
{xy; yz}, and {x2 � y2; xy} basis functions of the irreducible repre-
sentations. The amplitudes of vibrations based on these basis func-
tions exhibit zero, two, and four nodes in the xy plane, respectively
[18]. As a good example of vibrational modes in the (n;n), radial
breathing mode (RBM) having strong A1g active modes at the low
frequency range was reported by Rao et al. [19]. By using tight
binding models or ab-initio models, the frequencies of RBMs have
been identified and shown to be inversely proportional to diame-
ters of the (n;n), showing strong A1g symmetry. D-band is featured
by the defects and the finite size effects of the (n;n), and G-band
modes showing tangential vibrations are widely known [20].

To date, little attention has been paid to characterizing Raman
intensity variations, frequency shifts, and vibrational density of
states (VDOSs) with respect to a series of the (n;n), whose charac-
teristics have a strong correlation with the changes of tube diame-
ters, lengths, and the number of carbon atoms. In this sense, main
purpose of this study is here to examine Raman intensity and fre-
quency characteristics, to analyze VDOSs of the (n; n) including 3-
decomposed vibrational modes, and to explore unknown vibra-
tional mode frequencies in the high frequency range, regarding
to the (n;n).

The Raman intensity changes are dependent on polarizability
changes in a bond of the CNT structure as increasing the tube
diameters, representing that r� p hybridizations are changed
from more like sp3 to sp2 structures by bond angle changes. It is
found that the magnitude of Raman intensities associated with
the most symmetric vibrations (A1g symmetric modes) increases
as the magnitude of bond polarizability changes is increased in
the CNT matrix structure. Bond polarizability changes come from
the distortion of electron distributions in a bond of the CNT struc-
ture, meaning that r� p hybridizations originated in smaller bond
angles of the CNT matrix more likely cause electric bond polariz-
ability changes. For calculations, we used the (n;n); n = 2–15 to
see the sequential trends of Raman intensities showing the bond
polarizability changes as a function of the tube diameters, lengths,
and the number of the tube atoms. We suspect that Raman inten-
sities for purely symmetric A1g modes (radial atom displacements)
become stronger for smaller tubes whose r� p hybridizations are
consistent with their more sp3-like hybridization structures. The
hypothesis is supported by the results obtained from characteriz-
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ing the Raman intensity trends of carbon isomers, C20, C28, C60, and
C70, which show similar intensity trends to those of the (n;n). It is
also valuable to see interesting frequency variations of the (n;n);
n = 5–15 with l = 2 in D–band like and G–band like frequency
range. Specifically, frequency inward shifts and intense peaks dis-
covered in the two frequency ranges mentioned above might be
useful for some of the (n;n) to distinguish their characteristics.

VDOS of the (n;n) is another important subject to be considered
when changing the various armchair indice (n;n), because the
vibrational mode distributions of the (n;n) represent the vibra-
tional motions of each atom inside of the CNT matrix and are
related to the physical properties such as the electronic structure.
In this point, the decompositions of the vibrational modes into
radial, longitudinal, and tangential components in VDOS are defi-
nitely useful to characterize the variations of the electronic struc-
ture, derived from the curvature effects on frequency patterns as
changing the diameters of the (n;n). The r� p hybridization devi-
ations and smaller tube radii that lead to more CNT curvatures
should be an determinant of the decrease of p interactions in the
CNT structure. In using the eigenvectors of each carbon atom in
the (n;n), 3-decomposed vibrational modes are distinguished,
and these modes of the selected (n;n) are characterized, which
obviously show the distinct frequency patterns as increasing the
tube diameters and unit cell lengths. Consistent VDOS patterns
and frequency shifts observed in some decomposedmodes are nec-
essarily taken into account. Exceptional VDOS patterns above
�1900 cm�1 in tangential mode are considered as particular char-
acteristics of the (n; n), and it is presumably suggested that the
VDOSs above the high frequency are formed from the edge of the
(n; n) as edge modes.

To better understand Raman intensity features related to bond
polarizability and the p interactions in the r� p hybridizations,
which are induced by the tube curvatures, the trends of RBM, D-
band like, and G-band like frequencies are characterized. VDOS
patterns of the (n;n) are interpreted by using Gaussian density
functions. Further, the changes in symmetry-decomposed vibra-
tional modes with respect to the various diameter changes of the
(n; n) are valuably studied. For the trends of 3-decomposed vibra-
tional modes, two of the armchair (n;n) were selectively chosen
to see the most obvious frequency trends in this work.

2. Methods

Armchair carbon nanotube fragments with a variety of diame-
ters and lengths were prepared. Their geometry is optimized with
Gaussian 09, revision B.01 [21], using density functional theory
with the B3LYP functional [22,23] and the 6-31G basis set
[24,25] whose accuracy is enough to calculate Raman spectra of
the (n;n) only consisting of carbon atoms, and computation time
is reasonably fast. Raman intensities with A1g symmetry and eigen-
vector values for the (n;n); n = 2–15 are calculated, and all vibra-
tional mode frequencies from 0 cm�1 through 2500 cm�1 are
calculated with the finite-sized nanotubes.

Length (l) of the tube is defined here as the number of length
unit cells of the armchair (n;n) in the longitudinal direction (z-
axis). For example, the (5,5), an armchair tube with one length unit
cell (l = 1) contains 20 carbon atoms. Length unit cells of the (n;n)
are used from l = 2 up to l = 25, and the armchair indice (n;n) from
the (2,2) to the (15,15) are applied. Non-periodic boundary condi-
tions of the finite-sized (n;n) are used without hydrogen termina-
tions. Finite size of the non-periodic (n;n) ranges from a minimum
of 24 atoms to a maximum of 200 atoms.

Table 1 shows all the armchair (n;n) used in here. Each of the
geometry-optimized tubes with DFT calculations provides a stable
geometry that has a minimum energy. Among the (n;n), a mini-

mum diameter is 2.8 Å for the (2,2) tube and a minimum length
is 3.69 Å for the (15,15) when using only 2 length unit cells. A max-
imum diameter is 20.35 Å for the (15,15) tube and a maximum
length is 61.6 Å for the (2,2) when using 25 length unit cells.

All eigenvector values using Cartesian (x; y; z) coordinate for
each vibrational mode are used to decompose the vibrational
modes into their radial, tangential, and longitudinal components.
Here, we define the calculation of each decomposed vibrational
mode. The calculation of vibrational mode frequencies results in
3N different eigenvectors ei ¼ ð~ei1;~ei2; � � � ;~eiNÞ, where ~eij describes
the three dimensional motion of atom j in eigenmode i. Typically,
these displacements are calculated in Cartesian coordinates. How-
ever, given the cylindrical symmetry of the CNT systems, it is con-
venient to express the atomic displacements in cylindrical
coordinates, with a distinct coordinate system for each atom, using
its position vector to define the radial direction. That is, for any
atom jwe can define a cylindrical coordinate systemwith mutually
orthogonal unit vectors q̂j; ĥj; ẑ where

q̂j ¼ r̂j � ðr̂j � ẑÞẑ ð1Þ
is the projection of the position of atom j into the x–y plane and

q̂j ¼ q̂j

jq̂jj ð2Þ

is the unit vector pointing in the same direction. The ẑ vector is the
same in cylindrical coordinates as in Cartesian coordinates (and
does not vary with atom position), and the tangential direction is
defined as

ĥj ¼ ẑ� q̂j ð3Þ
Using these coordinates, we define the radial component of eigen-
vector ei as

/rad;i ¼
PN

j¼1ð~eij � q̂jÞ2
PN

j¼1j~eijj2
ð4Þ

Likewise, the tangential and longitudinal components are defined as

/tang;i ¼
PN

j¼1ð~eij � ĥjÞ
2

PN
j¼1j~eijj2

ð5Þ

and

/long;i ¼
PN

j¼1ð~eij � ẑÞ2
PN

j¼1j~eijj2
ð6Þ

respectively. Note that since the q̂j; ĥj, and ẑ vectors are mutually
orthogonal for each atom j, we are assured that

Table 1
All armchair (n;n) used for the Raman intensities, frequency trends, and vibrational
modes.

(n;n) Length unit cells (l) Atoms used

(2,2) l = 2, 5, 7, 13, 20, 25 16–200
(3,3) l = 2, 3, 4, 5, 9, 10, 12, 13, 15, 16 24–192
(4,4) l = 2, 3, 4, 6, 7, 9, 10, 12 32–192
(5,5) l = 2, 3, 4, 5, 6, 7, 8, 9, 10 40–200
(6,6) l = 2, 4, 5, 6, 7, 8 48–192
(7,7) l = 2, 3, 4, 5, 6, 7 56–196
(8,8) l = 2, 3, 4, 5, 6 64–192
(9,9) l = 2, 3, 4, 5 72–180
(10,10) l = 2, 3, 4, 5 80–200
(11,11) l = 2, 3, 4 88–176
(12,12) l = 2 and 3 96 and 144
(13,13) l = 2 and 3 104 and 156
(14,14) l = 2 and 3 112 and 168
(15,15) l = 2 and 3 120 and 180
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