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Single-molecule super-resolution imaging and tracking can measure molecular motions inside living cells
on the scale of the molecules themselves. Diffusion in biological systems commonly exhibits multiple
modes of motion, which can be effectively quantified by fitting the cumulative probability distribution
of the squared step sizes in a two-step fitting process. Here we combine this two-step fit into a single
least-squares minimization; this new method vastly reduces the total number of fitting parameters
and increases the precision with which diffusion may be measured. We demonstrate this Global Fit
approach on a simulated two-component system as well as on a mixture of diffusing 80 nm and
200 nm gold spheres to show improvements in fitting robustness and localization precision compared
to the traditional Local Fit algorithm.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Subcellular dynamics vary in time and over small size scales
due to spatial and temporal variations such as transient interac-
tions with molecular partners | 1], crowding by the nucleoid in bac-
teria [2], or the presence of different lipid domains in membranes
[3]. To measure the motions of biological molecules such as pro-
teins and lipids in the face of this complicated local environment,
single-molecule super-resolution fluorescence microscopy data
must be analyzed with a method that systematically accounts for
heterogeneity. One approach to single-particle tracking (SPT)
derives the apparent diffusion coefficient from each individual tra-
jectory from the mean square displacement (MSD) vs. time lag
curve [4-6]. The trajectory of each particle is thus assigned an
average diffusion coefficient with this MSD approach, and hetero-
geneous diffusion is described by dividing the collection of MSD
curves into diffusive populations. The number of trajectories in
each population of curves may be taken as an estimate of the rel-
ative proportions of these diffusive populations [7-9]. However,
in real systems, heterogeneous diffusion can be observed even over
the course of the trajectory of a single molecule, and this single-
track MSD analysis specifically disallows the case where a single
molecular trajectory experiences multiple diffusive modes by pro-
viding only the average diffusion coefficient for each track.

* Corresponding author.
E-mail address: jsbiteen@umich.edu (J.S. Biteen).

http://dx.doi.org/10.1016/j.cplett.2017.02.052
0009-2614/© 2017 Elsevier B.V. All rights reserved.

An approach that accounts explicitly for such heterogeneous
motion considers the entire collection of single-molecule steps
instead of dividing these steps into individual tracks. This collec-
tion of step data can then be quantified based on the cumulative
probability distribution (CPD) of the collection of squared step
sizes to explicitly account for spatial and temporal heterogeneities,
and increase the signal-to-noise ratio. Single-step CPD analysis is
therefore a diffusion estimation technique that has had impact
across fields by characterizing diverse biological systems such as
artificial membranes, leukocytes, bacterial membranes, neurons
and artificial materials [10-22].

Alternatively, a number of Bayesian [23-26] and machine
learning algorithms [27] can be used to estimate the number of
diffusive components and measure their properties, but the com-
plexity of these methods poses a significant barrier to intuitive
understanding of the underlying modes of heterogeneous motion.
Fluorescence correlation spectroscopy (FCS) and the related meth-
ods of spatiotemporal image correlation spectroscopy (STICS), ras-
ter image correlation spectroscopy (RICS), or particle image
correlation spectroscopy (PICS) can also quantify diffusion; these
approaches all employ spatial or temporal correlation functions
which can also be fit to multi-component diffusion models
[28-32], but it is rare for the signal-to-noise to be high enough
for the analysis of complex heterogeneous motion such as are
found in bacterial systems [33]. The ability of single-particle track-
ing to isolate high quality trajectories from noisy single molecule
data can present a more attractive conduit for analysis.
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Despite its advantages, the commonly employed CPD analysis
method involves a two-step fitting process where the CPD and
MSD curves are fit sequentially [11,13]. We present here an
approach that combines this two-step Local Fit process into a
single-step multi-domain Global Fit algorithm. We analyze simu-
lated trajectories of multiple diffusive components to measure
the improvements in the diffusion coefficient estimation error
and find that Global Fit is superior to the traditional Local Fit
CPD analysis algorithm. We then consider the diffusion of 80 nm
and 200 nm gold spheres in glycerol water solution to show that
Global Fit outperforms Local Fit in a real system. We report
improvements in precision, robustness, and simplicity of use.

2. Materials and methods
2.1. Imaging and tracking

Slides were imaged at room temperature using wide-field epi-
fluorescence microscopy in an Olympus IX71 inverted microscope
with a 100x, 1.40 NA oil immersion objective (in Zeiss Immersol
518F immersion oil) and appropriate excitation, emission, and
dichroic filters (Semrock LLO1-488, Semrock BLP01-488 and
Semrock Di01-R488, respectively). After a 3x beam expander, a
Photometrics Evolve EMCCD camera with >90% quantum efficiency
captured the images at 100 frames per second. Each camera pixel
corresponds to a 49 nm x 49 nm area of the sample. The gold
spheres were illuminated with a 488 nm laser (Coherent Sapphire
488-50), that was circularly polarized with a quarter waveplate
(Tower Optical AO15Z 1/4). Single molecule positions were associ-
ated into tracks with the Hungarian algorithm [34] according to an
exponential merit function [35].

2.2. Diffusion of gold spheres in glycerol

Gold nanoparticles with diameters 80 and 200 nm (BBI Solu-
tions) were dispersed in 50% glycerol. 5 pL of the mixture was
sandwiched between two glass coverslips. The second through
fifth time lags were used for both the Global Fit and Local Fit algo-
rithms to reduce the magnitude of the fitting residuals.
Unweighted least squares fitting was performed with the Matlab
built-in function Isqnonlin.

2.3. Simulations

Diffusion was simulated by generating 10 steps from a zero-
mean normal distribution with variance equal to 2Dtg,me, Where
D is the desired diffusion coefficient and tf,me is the simulated
camera exposure time which was set to 0.04 s. Localization preci-
sion was simulated by adding zero-mean Gaussian-distributed
random numbers to the simulated trajectories; the localization
precision, or the standard deviation of the random numbers, was
varied from 4.9 nm to 73.5 nm. Each simulation was repeated 10°
times. The first 10 time lags were used for both the Global Fit
and Local Fit algorithms and unweighted least squares was per-
formed with the Matlab built-in function Isqnonlin.

2.4. Bootstrapping

For the analysis of the tracks of gold spheres, histograms of esti-
mated diffusion coefficients and population weights were pro-
duced by bootstrapping the fitting procedure. The total set of
13232 squared step sizes was sampled with replacement 300 times
to produce 300 unique data sets each with as many values as the

original data set. These bootstrapped data sets were then fit with
either the Global Fit or Local Fit method.

2.5. CPD Local Fit

To probe heterogeneous diffusion, the cumulative probability
distribution (CPD) of squared step sizes (Ar?) was calculated from
the tracks of diffusing molecules at each time lag (t) between
frames in the trajectory. There is one CPD curve, CPD;, for each time
lag considered, and each CPD; was fit to the multi-term exponential
fit [11] with the appropriate number of terms (three terms shown
here for instance):
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This series of fits, where i, runs from 1 to the number of time
lags considered, N, estimates three mean squared displacements,
MSD,, MSD-, and MSDs, as a function of time lag for Np = 3 diffusive
populations with weights o, oy, and (1 — «; — o), respectively.
Each of the three MSD curves is then fit to a model—here of 2D
unconfined diffusion—to extract the diffusion coefficient of the
respective population of molecules. For example, for population
1, the second-step fitting function is:

MSD; = 4D;7 + 402, 2)

where D; is the diffusion coefficient of population o«;, 7 is the
domain of time lags and o is the localization precision for popula-
tion o. If one uses the first 5 time lags to estimate the diffusion
coefficients of three populations, the total number of fitting param-
eters in this local CPD fitting approach is: 5 x N; +2 x Np = 31 here
with N; =5, and Np = 3.

2.6. CPD Global Fit

Instead of fitting in separate steps, the set of empirical CPDs
may be fit all at once by incorporating the MSD functions (Eq.
(2)) into Eq. (1). Conceptually, this can be understood as the shar-
ing of redundant parameters, such as the weight of population 1,
i.e., 1. The free parameters in the combined fitting function now
include only Np diffusion coefficients (one for each population), a
single localization precision, o, shared among all populations,
and all but one of the population weights because one is estimated
using the others. For instance, if one wishes to estimate the diffu-
sion coefficients of three populations, the total number of fitting
parameters is 6 (three diffusion coefficients, one localization preci-
sion parameter, and two population weight parameters). This
number of fitting parameters in Global Fit is hugely improved from
the 31 parameters necessary for Local Fit.

We implemented Global Fit with a Matlab-specific formulation
that exchanges several nonlinear least squares problems for a sin-
gle larger nonlinear least squares problem. See https://github.com/
BiteenMatlab/SingleMoleculeDataAnalysis for complete code; the
key snippets of our code describing the use of this algorithm for
a three-population Global Fit are given here:

msdFun = @(tau,p)cat (2, 4xp(l)*xtau+p(2),
4xp(3)xtau+p(2), 4xp(4)xtau+p(2));

cpdFun = @(x,y,p)1-p(5)*exp(-x/y(1))-p(6)*exp(-x/y
(2))-(1-p(5)-p(6))*exp(-x/y(3));
-p(6)*xexp(-x/y(2))-(1-p(5)-p(6))
*exXp (-X/y(3));
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