Accepted Manuscript

Research paper

A comparative study of oxygen-doped and pure beryllium clusters based on structural, energetic and electronic properties

Jin-Ye Li, Di Wu, Ying Li, Zhi-Ru Li

PII: DOI: Reference:	S0009-2614(17)30166-5 http://dx.doi.org/10.1016/j.cplett.2017.02.047 CPLETT 34560
To appear in:	Chemical Physics Letters
Received Date: Revised Date: Accepted Date:	21 January 20179 February 201713 February 2017

Please cite this article as: J-Y. Li, D. Wu, Y. Li, Z-R. Li, A comparative study of oxygen-doped and pure beryllium clusters based on structural, energetic and electronic properties, *Chemical Physics Letters* (2017), doi: http://dx.doi.org/10.1016/j.cplett.2017.02.047

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A comparative study of oxygen-doped and pure beryllium clusters based on structural, energetic and electronic properties

Jin-Ye Li, Di Wu, Ying Li*, Zhi-Ru Li

Institute of Theoretical Chemistry, Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, China

ABSTRACT

The lowest-energy structures of the oxygen-doped Be_n (n = 1-12) clusters are obtained at the B3PW91 level. Various energetic and electronic properties of the Be_nO clusters are systematically investigated using the QCISD(T) method, which are compared with those of pure Be_{n+1} clusters. The evolution of these properties with cluster size shows the unique stability of Be₁₁O, which can actually be considered as an ionic compound (Be₁₁)²⁺O²⁻. On the one hand, O²⁻ has 8 valence electrons, satisfying the octet rule. On the other hand, the Be₁₁²⁺ moiety has a shell-closed electronic configuration, which renders itself particularly stable.

Keywords: Be_n cluster, dopant, theoretical study, density functional theory, stability

R

^{*} Corresponding author

E-mail address: liyingedu@jlu.edu.cn (Y. Li)

Download English Version:

https://daneshyari.com/en/article/5378112

Download Persian Version:

https://daneshyari.com/article/5378112

Daneshyari.com