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Informational energy as a measure of electron correlation
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a b s t r a c t

In this letter we introduce a redefinition of the Onicescu’s discrete informational energy, and show that
our definition may be used as a correlation measure in atomic and molecular systems, we analyzed the
correlation effects atoms and in a set of 1864 molecules.

� 2016 Published by Elsevier B.V.

1. Introduction

The phenomena of electron correlation probably are one of the
most important concepts in the chemistry, physics, and biology, in
fact, without this concept, most of the modern theories cannot
reproduce appropriate results. In this context, there are consider-
able works about the correlation, and several measures have been
proposed. With the recent fusion between chemistry and informa-
tion theory [1] many concepts of the chemistry can be explicated
using concepts of Shannon’s model, actually in 1992 Collins [2]
linked the correlation energy to Shannon’s entropy (also called
Jaynes’ entropy [3,4]) and proposed a conjecture that pointed that
the correlation energy and the entropy could be related in the
following way, Ecorr ¼ ,

P
ini ln ni, where , is a positive constant

to be determined, and ni are the occupation numbers obtained
from a diagonal first-order density matrix, basically Collins pro-
posed that Ecorr ¼ �,S; several studies have been done in this
address [5–15], and showed that the information theory could be
used to describe, probably, one of the most complex phenomena
of the naturals sciences, the correlation among many bodies.

In this context, the study of the correlation phenomena is inter-
esting not only, from the mathematical or computational point of
view as was pointed by Dirac, who wrote [16], ‘The underlying laws
necessary for the mathematical theory of a large part of physics and
the whole of chemistry are thus completely known, and the difficulty
is only that the exact application of these laws leads to equations much
too complicated to be soluble. It, therefore, becomes desirables that
approximate practical methods of applying quantum mechanics
should be developed, which can lead to an explanation of the main fea-
tures of complex atomics systems without too much computation.’

Actually, since the 1950s with the develop of the methodologies
of the quantum chemistry, we generally, use a concept called cor-
relation energy defined by Löwdin [17] as follows: ‘The correlation
energy for a certain state with respect to specified Hamiltonian is the
difference between the exact eigenvalue of the Hamiltonian and its
expectation value in the Hartree-Fock approximation for the state
under consideration.’ In fact, during more than fifty years the con-
cept of correlation energy has been being part of the traditional
analysis in the field of the electronic structure, however, such as
Mulliken wrote [18], ‘The more accurate the calculations become,
the more the concepts tend to vanish into thin air.’ Thus, in this letter
we propose a measure of correlation applicable to atomic or molec-
ular systems, considering the simplicity.

It is not strange, that some works ensure that the correlation
energy it is an ad hoc concept, however in this letter we use a cor-
relation energy theorem that is as follows,

Theorem 1. If the approximate correlatedwave functionW0 is selected
with a variational criteria from a Hilbert spaceH of functions such that
the function base W0, and the functions are normalized so that,

W0jW0h i ¼ W0jW0h i ¼ 1; ð1Þ
then, the expression for the correlation energy will be,

Ecorr ¼ W0h jbH Uj i; ð2Þ
where U ¼ ðW0 �W0Þ, and considering W0jUh i ¼ 0, we obtain,

Ecorr ¼ E0 � E0 ¼ W0h jbH W0j i
W0jW0h i � W0h jbH W0j i: ð3Þ

See Ref. [19] for the demonstration of this theorem. If we choose
E0 ¼ EHF and E0 ¼ ECISD in Eq. (3), then the expression for the corre-
lation energy will be comparable to the Löwdin’s expression,
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Ecorr ¼ ECISD � EHF 6 0: ð4Þ
With the knowledge of the first-order density matrix we can

determinate all monoelectronic properties of the systems [20], this
density matrix is defined as,

c 1j10� � ¼ X
i

kIw1ð1Þw�
i ð1Þ; ð5Þ

where the k1 are the occupation numbers, and for a pure state, this
density matrix fulfills the idempotency criteria: TrC2

w ¼ TrCw ¼ 1,

meanwhile for a mixed state TrC2
w – TrCw, therefore using the

idempotency property and Eq. (4), we defined an expression for
the correlation as,

Icorr ¼ TrC2
CISD � TrC2

HF ¼
X
i

n2
i � 1; ð6Þ

where we used the fact that TrC2
HF ¼ 1, and as in the case of Eq. (4),

Icorr 6 0. On the other hand, Eq. (6) has a similar form to the infor-
mational energy introduced by Onicescu in 1966 [21], this expres-
sion for the energy is,

EðpiÞ ¼
Xn
i¼1

p2
i ; ð7Þ

where pif gni¼1, is a discrete probability distribution subject toPn
i¼1pi ¼ 1 and 0 6 pi 6 1, actually this definition does not have

energy units, and the term ‘energy’ it is because, as in the case of
the thermodynamic energy, Eq. (7) is a convex function, and it will
be minimum if

P
i¼1pi ¼ N and maximum if

P
i¼1pi ¼ 1. A general-

ization of the Onicescu’s energy was done by Theodorescu [22],

EaðpÞ ¼
Xn
i¼1

1
a� 1

� �
pai ; a– 1; a 2 R > 0; ð8Þ

where pi is a discrete probability set, that also fulfills
Pn

i¼1pi ¼ 1 and
0 6 pi 6 1; for a ¼ 2 Eq. (8) becomes into Eq. (7); a classification of
order-a information energy, was done by Bathia [23] who has
proved that Eq. (8) had the follow properties (i) it is recursive, (ii)
it is symmetric and (iii) it is differentiable. Recently, the informa-
tional energy has been used to define other informational concepts
such as the informational temperature [24], and in the context of
the density functional theory, a Euler equation of orbital-free den-
sity functional theory has been defined [25], and also, has showed
that this informational measure is related to the chemical reactivity
[26,27]; in 1995 a similar expression for the Onicescu’s energy was

proposed as a disequilibrium measure [28], this last one measure
has been used profusely in the field of the statistical complexity
[29–42].

On the other hand, to apply Eq. (7) is necessary select a scheme
of occupation numbers that fulfills the informational criteria [43]
and also fulfills with the invariant rotational criterion [44–46],
such property permit us to obtain a population analysis without
a strong dependency of the basis sets or methods.

In the follow section we present the results of Icorr applied to
atomic and molecular systems.

2. Results of informational energy in atoms and molecules

In this letter, we present two study cases: (i) atoms in their
basal state, where we analyzed the effect of the methodology
and basis set on the correlation measure proposed in this work
and (ii) a large set of molecules and compare Icorr with
Ecorr ¼ ECISD � EHF . All the calculations of energy were done with
Gaussian 09 [47] and the occupation numbers were performed
with NBO 5.0 [48].

2.1. Atoms

In this section, we present the results of Eq. (6) with the first
fifty-four neutral atoms of the periodic table using the basis set
DGDZVP and with the first thirty-six atoms with the basis sets 6-
311G, 6-311+G, 6-311++G, 6-311G⁄, 6-311G⁄⁄, 6-311+G⁄, 6-311
+G⁄⁄, 6-311++G⁄ and 6-311++G⁄⁄, in both cases we used
CCSD(full) and CISD(full).

In Fig. 1 we present the general trends of Icorr and the correlation
energy for the first fifty-four elements in their basal state. The
calculations of Icorr and Ecorr were performed with CISD(full),
CCSD(full) and the basis set DGDZVP. The trends obtained of Icorr
have a periodic variation according to the periodic table, each step
in Fig. 1 correspond to the periods of the periodic table, but this
measure, in contrast with the correlation energy, also can separate
the atoms respect to their block, that is, the values of the second
step of Icorr in Fig. 1 correspond to Li and Be; meanwhile the third
step correspond to block p elements: B, C, N, O, F, and Ne. The same
observation is for the rest of the elements. In this Figure, we noted
a numerical inconsistency only for the yttrium, this anomaly could
be attributed to a bad description of the population analysis with
this basis set used.

Fig. 1. General trends of Icorr , and the correlation energy, Ecorr ¼ Eref � EHF , where Eref ¼ ECISDðfullÞ; ECCSDðfullÞ with the basis set DGDZVP.
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