

Chemical Physics Letters

journal homepage: www.elsevier.com/locate/cplett

$(CH_3Br\cdots NH_3)@C_{60}$: The effect of nanoconfinement on halogen bonding

Ambrish Kumar Srivastava ^a, Sarvesh Kumar Pandey ^b, Neeraj Misra ^{a,}*

^a Department of Physics, University of Lucknow, Lucknow 226007, India **b** Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India

article info

ABSTRACT

Article history: Received 19 May 2016 In final form 11 September 2016 Available online 17 September 2016

Keywords: Halogen bond Intermolecular interaction Nanoconfinement DFT **OTAIM**

1. Introduction

Halogen bonds are characterized as non covalent interactions, which are paid much attention in last two decades. These bonds can be strong enough to control aggregation of organic molecules in solids $[1]$, liquid $[2]$, liquid crystals $[3]$ and gas phase $[4]$. Halogen bonds can also be utilized in supramolecular architecture [\[5\],](#page--1-0) molecular recognition [\[6\]](#page--1-0) and solid state synthesis [\[7\].](#page--1-0) Halogen bonding (X-bond) resembles hydrogen bonding (H-bond) in many aspects $[8,9]$. These interactions are defined as, H-bond: D-H \cdots A and X-bond: $D-X\cdots A$, where D is an electron donor and A is acceptor, which is an electronegative atom or electron withdrawing group, i.e., it has lone pair of electrons. Lommerse et al. [\[10\]](#page--1-0) performed a systematic study on the nature and geometry of intermolecular interactions between carbon bonded halogens $(C-X,$ $X = F$, Cl, Br or I) and electronegative atoms $(A = N, O \text{ and } S)$. They found that the electronegative atoms in various hybridization states clearly prefer to form contacts with Cl, Br and I (but not F) in the direction of the extended $C-X$ bond axis.

Buckminsterfullerene (C_{60}) [\[11\]](#page--1-0) is a spherical empty nanocage of carbon, in which a variety of atoms, molecules and clusters can be encapsulated. Such fullerenes are termed as endohedral fullerenes $[12,13]$ in which C_{60} sphere works as a protective cover. The H_2 molecules encapsulated into C_{60} have been reported [\[14–16\]](#page--1-0), which suggests the hydrogen storage capacity of fullerene

Halogen bonds resemble hydrogen bonds in many aspects. How do the properties of halogen bonds change when confined to nanoregion? In order to explore this, we have encapsulated a halogen bonded complex, $CH_3Br\cdots NH_3$ inside C₆₀ fullerene and studied their properties using density functional theory and quantum theory of atoms in molecule. Our findings show that the geometry of $CH_3Br\cdots NH_3$ complex is appreciably bent inside C_{60} , interaction becomes covalent with larger interaction energy, unlike free $CH_3Br\cdots NH_3$ complex, which is linear with closed shell interaction. Thus, the halogen bonded complexes show quite different properties at nanoscale.

2016 Elsevier B.V. All rights reserved.

nanocage [\[17\]](#page--1-0). The chemical bonding in the dimer of noble gas atoms inside C_{60} , Ng₂@C₆₀ (Ng = He, Ne, Ar, Kr and Xe) have been explored by Krapp and Frenking [\[18\].](#page--1-0) The properties of molecular clusters of various molecules, such as $(H_2O)_n$ [\[19,20\]](#page--1-0), $(HF)_n$ [\[21\]](#page--1-0) and $(NH_3)_n$ [\[22\]](#page--1-0) inside C₆₀ have also been studied. It has been reported $[19-21]$ that the geometries of hydrogen bonded $(H_2O)_2$ and $(HF)_2$ are significantly changed such that their interaction energy is increased. These findings motivated us to analyze the effect of confinement on halogen bonding inside C_{60} nanocage. We have studied halogen bonding in molecular complex, CH_{3} - $Br\cdots NH_3$ encapsulated within C₆₀ using density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM).

2. Computational methods

In order to choose appropriate DFT method for the system under study, we have performed test calculations on $CH_3Br\cdots NH_3$ complex using various functionals. In [Table 1,](#page-1-0) we list the halogen bond distance and angle for comparison. We notice that the M06-2X [\[23,24\]](#page--1-0) seems satisfactory due to performance equivalent to long range dispersion corrected ω B97xD method. Therefore, we have adopted M06-2X/6-311++G(d) scheme as implemented in GAUSSIAN 09 program [\[25\]](#page--1-0). The geometry optimization has been carried out without any symmetry constraint in the potential energy surface. The vibrational frequencies of optimized structures have been computed at the same level of theory. The partial atomic charges have been obtained using natural bonding orbital (NBO) scheme [\[26\]](#page--1-0) available in the Gaussian 09 program. QTAIM calculations were carried out with AIMAll program [\[27\].](#page--1-0)

Research paper

[⇑] Corresponding author at: Department of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India.

E-mail addresses: [neerajmisra11@gmail.com,](mailto: neerajmisra11@gmail.com) [mishra_neeraj@lkouniv.ac.in](mailto: mishra_neeraj@lkouniv.ac.in) (N. Misra).

Table 1 Comparison of halogen bond distance and angle in $CH_3Br\cdots NH_3$ at various DFT levels.

DFT level	$d(Br\cdots N)$	$A(C-Br\cdots N)$
$B3LYP/6-311++G(d)$	3.121 Å	179.9°
CAM-B3LYP/6-311++G(d)	3.102 Å	179.9°
ω B97xD/6-311++G(d)	3.096 Å	179.9°
$M06/6-311++G(d)$	2.985 Å	179.9°
$M06-2X/6-311++G(d)$	3.075 Å	179.9°

3. Results and discussion

The equilibrium structure of $(CH_3Br\cdots NH_3)\mathcal{O}C_{60}$ is displayed in Fig. 1. The hexagon–hexagon and hexagon–pentagon $C-C$ bonds are calculated to be 1.411–1.467 Å and 1.426–1.469 Å, respectively. The corresponding bonds in empty C_{60} cage are obtained to be 1.385 Å and 1.450 Å, respectively at the same level of theory. The root mean square of deviation (RMSD) of bond lengths is only 0.075 Å. This suggests that encapsulated molecular complex does not affect the geometry of C_{60} appreciably. The structure of encapsulated $CH_3Br\cdots NH_3$ has been displayed in [Fig. 2](#page--1-0) and compared with that of free (gas phase) $CH_3Br\cdots NH_3$ complex. One can note that in free complex, both CH_3Br and NH_3 molecules are almost linear (bond angle \sim 180 $^{\circ}$) and linked by a halogen bond (C-Br \cdots N) with the bond distance of 3.075 Å. When the complex is encapsulated in C_{60} , the molecules rearrange themselves such that the bond angle and distance are reduced to 77° and 1.800 Å, respectively. Likewise, C—Br bond length inside C_{60} is also reduced from 1.944 Å to 1.839 Å. Thus, the pressure exerted by C_{60} brings the molecules closer and reorients them. This feature resembles that of $(H_2O)_2@C_{60}$ in which two hydrogen bonded H_2O molecules become perpendicular inside C_{60} [\[19,20\].](#page--1-0) In order to further explore the effect of confinement on halogen bonding, we have listed some parameters corresponding to halogen bond in free CH₃-Br \cdots NH₃ complex and that inside C₆₀ in [Table 2,](#page--1-0) along with their geometry. The stretching vibration of $Br\cdots N$ halogen bond is calculated at 121.9 cm^{-1} for free complex, which is shifted to higher wavenumber (228.3 cm⁻¹) when the complex is encapsulated within C_{60} . Note that the blue shift of stretching frequencies has already been reported for a variety of molecules inside C_{60} [\[28\].](#page--1-0)

Fig. 1. The optimized structure of $(CH_3Br\cdots NH_3)\mathcal{O}C_{60}$ at M06-2X/6-311++G(d) level.

The energy of Br \cdots N halogen bond in free CH₃Br \cdots NH₃ complex can be estimated as:

$$
\Delta E = E[CH_3Br] + E[NH_3] - E[CH_3Br \cdots NH_3]
$$
\n(1)

which is calculated to be 2.3 kcal/mol. In order to check whether the basis set superposition error (BSSE) affects this interaction energy value, we have applied counterpoise procedure [\[29\].](#page--1-0) The BSSE corrected value is same as 2.3 kcal at M06-2X/6-311++G(d) level of theory. This is expected as BSSE reduces with the increase in the size of basis set $\left[30\right]$ and becomes insignificant for sufficiently large basis set as in the present case. Therefore, we have excluded BSSE for our further calculations. The stabilization energy of C_{60} by encapsulation of $CH_3Br\cdots NH_3$ complex is calculated as below:

$$
\Delta E_1 = E[(CH_3Br\cdots NH_3)@C_{60}] - E[C_{60}] - E[CH_3Br\cdots NH_3]
$$
 (2)

Likewise, the stabilization energy of the cage encapsulating two isolated CH_3Br and NH_3 molecules without any intermolecular interaction can be estimated as follows:

$$
\Delta E_2 = E[(CH_3 Br \cdots NH_3) \textcircled{c}_{60}] - E[C_{60}] - E[CH_3 Br] - E[NH_3]
$$
(3)

The calculated ΔE_1 and ΔE_2 values at M06-2X/6-311++G(d) level are 1059.9 kcal/mol and 1050.5 kcal/mol, respectively. Therefore, the intermolecular interaction energy between $CH₃Br$ and $NH₃$ inside C₆₀ can be obtained as below:

$$
\Delta E = \Delta E_1 - \Delta E_2 \tag{4}
$$

which is 9.4 kcal/mol, as listed in [Table 2](#page--1-0). Although molecular complex tends to destabilize the C_{60} cage, intermolecular interaction becomes stronger than that in free complex. This feature can be explained on the basis of the polarization of C_{60} by charge transfer from encapsulated molecules. Note that $NH₃$ possesses a lone pair of electrons and acts as a good nucleophile. It is believed [\[31\]](#page--1-0) that nucleophiles generally interact coaxially with the $C-X$ bond in organic molecules $(X = CI, Br and I)$. This is due to the fact that the electropositive potential region lies at the end of X atom in CH_3Br [\[32\].](#page--1-0) In [Fig. 3](#page--1-0), we have displayed the electrostatic potential (ESP) surface of $CH_3Br\cdots NH_3$ complex. Recently, the importance of ESP surfaces in the study of X-bonds has been highlighted $[33]$. It is evident that NH_3 approaches CH_3Br along the axis of C-Br bond, i.e., electron deficient region of Br. This is also reflected in the NBO charge on Br, which is $0.02e$ (see [Table 2](#page--1-0)). In case of (CH₃Br \cdots NH₃) \mathcal{O}_{60} , the cage is polarized mainly due to electron transfer from Br atom, which is accredited to its larger size responsible for high polarizing power. One can see that the NBO charges on Br and N atoms inside C_{60} are found to be +1.07e and $-1.76e$, respectively. This increases the electropositive potential in the vicinity of Br, which is reflected in the ESP surface (see [Fig. 3](#page--1-0)). Consequently, the strength of interaction of $Br\cdots N$ increases.

In order to get insights into interaction of molecular complex with C_{60} , we have performed QTAIM [\[34\]](#page--1-0) analysis. The interaction between two atoms is described by the presence of a bond critical point (BCP) [\[35\].](#page--1-0) The nature and strength of interaction are quantified on the basis of some topological parameters at BCP. According to Rozas et al. [\[36\],](#page--1-0) H-bonds are characterized as strong (covalent) for $\nabla^2 \rho_{\text{BCP}}$ < 0 and H_{BCP} < 0, medium (partially covalent) for $\nabla^2 \rho_{\text{BCP}} > 0$ and $H_{\text{BCP}} < 0$, and weak (electrostatic) $\nabla^2 \rho_{\text{BCP}} > 0$ and H_{BCP} > 0. The strength of interaction can be estimated as suggested by Espinosa et al. [\[37\]](#page--1-0):

$$
E_{\rm int} = -\frac{1}{2} V_{BCP} \tag{5}
$$

QTAIM method has also been applied on the physical nature and characteristics of X-bonds [\[38,39\]](#page--1-0) and it has been found that X-bonds can be classified as closed shell for relatively low values of ρ_{BCP} and positive sign of $\nabla^2 \rho_{\text{BCP}}$, whereas H_{BCP} is negative for strong X-bonds, reflecting the increase in covalent character. A

Download English Version:

<https://daneshyari.com/en/article/5378423>

Download Persian Version:

<https://daneshyari.com/article/5378423>

[Daneshyari.com](https://daneshyari.com/)