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a b s t r a c t

Virtual-system coupled adaptive umbrella sampling (VAUS) enhances sampling along a reaction coordi-
nate by using a virtual degree of freedom. However, VAUS and regular adaptive umbrella sampling (AUS)
methods are yet computationally expensive. To decrease the computational burden further, improve-
ments of VAUS for all-atom explicit solvent simulation are presented here. The improvements include
probability distribution calculation by a Markov approximation; parameterization of biasing forces by
iterative polynomial fitting; and force scaling. These when applied to study Ala-pentapeptide dimeriza-
tion in explicit solvent showed advantage over regular AUS. By using improved VAUS larger biological
systems are amenable.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Molecular dynamics simulation (MD) is useful to understand
the complexities of a polyatomic system, however inefficient
because of the complicated force-field equations and explicit treat-
ment of solvents with the system of interest [1]. This makes con-
formational sampling computationally expensive and sometimes
inadequate to simulate long-timescale events [2]. Therefore,
understanding microscopic details of those rare events require spe-
cial generalized ensemble techniques [3–8], for example adaptive
umbrella sampling (AUS) [9–12].

Understanding details of rare events are particularly crucial for
biomolecular systems, because many of the molecular functions
related to the survival of an organism are slow processes (e.g. fold-
ing, binding, conformational change) [13,14]. Yet, those micro-
scopic details are useful in medical research [15]. In this context,
binding is one of the central functions of biomolecules, which
can be regarded as a slow process of sampling between two
extremes – bound and unbound states [2]. For such a slow process
thermodynamic details may include large statistical error. Suppos-
ing a free-energy difference of 3 kcal/mol between bound (major
basin) and unbound (minor basin) states, one samples 1.7 � 107

snapshots of bound state per snapshot of unbound state [16],
which means large statistical error may be included in binding

free-energy landscape. Additionally, when the bound state
includes multiple basins the minor basins may also be insignifi-
cantly sampled. To overcome this sampling problem AUS or similar
techniques are used.

AUS is one of the flat histogram techniques, quite akin to sam-
pling by multicanonical MD (McMD) [2,9]. In AUS, energy of the
simulated system is biased by potential of mean force (PMF) along
a chosen reaction coordinate ðkÞ. This bias is applied at a given
temperature ðTÞ, at which the simulation is performed; therefore
multiple basins are sampled at that temperature. By iterative MD
initially unknown PMF is updated till convergence. The converged
PMF corresponds to an uniform probability distribution of the
reaction coordinate ðPobsðk; TÞÞ. However, we observed that many
cases of iterations fail to converge because of hysteresis of
Pobsðk; TÞ. One reason for the hysteresis is that there is theoretically
infinite number of microstates in a given k-slice ðk; kþ dkÞ, there-
fore in a given iteration only a tiny subset of the microstates
may be sampled, and in the successive iteration a different subset
is sampled. This can be improved by sampling a k region exhaus-
tively. This motivated us to design virtual-system coupled AUS or
VAUS [16].

The method VAUS has a precursor named virtual-system cou-
pled multicanonical MD (VMcMD) [4,17–20]. In VAUS we simulate
the biomolecular system of interest coupled to an arbitrary virtual
system composed of virtual states (see Section 2). Moreover,
VMcMD can be generalized by VAUS, i.e., the energy is adopted
as the reaction coordinate in VMcMD [21].
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Previously VMcMD and VAUS were successfully used for dimer-
ization of a endothelin-1 derivative [19] and Ab-peptide [16],
respectively. However, there were a few theoretical limitations
on sampling during iterative process. Moreover, we are also inter-
ested in qualitative difference between ensembles obtained by
VAUS and AUS.

In VAUS we have used a reaction coordinate defined by the dis-
tance between geometric centers of a pair of clusters of atoms. The
clusters of atoms are included in two different polypeptide chains
(Fig. 1), thereby k can be regarded as a inter-molecular distance.
This k is simple to realize, but sensitive to the variation in biasing
potential. This sensitivity requires that one should be careful in
estimating the biasing potential. In AUS and VAUS this estimation
is crucial to the convergence of simulation and is one of the pri-
mary focuses of the current work. To this end, we have improved
the calculation of bias by (1) a novel calculation method of proba-
bility distribution by using Markov state modeling, (2) refinement
of fitting to better parameterize the probability distribution, and
(3) de-sensitizing biasing force. The result was compared with that
from a regular AUS procedure.

2. Theory

2.1. VAUS

First we briefly introduce VAUS method, whose details are
explained in supplementary material S1. In VAUS a virtual degree
of freedom is introduced to the real biomolecular system ðrÞ
[2,16]. We assume that the virtual degree of freedom is a property
of a virtual system ðvÞ and takes discrete states vk, where
k ¼ 1; . . . ;m and m is the number of virtual states. In VAUS along
a reaction-coordinate k, the state of the entire system is designated
by k and vk. Virtual state vk is specified by a window ½kk;min; kk;max�
along the k axis (supplementary table ST1), and the configuration is
restrained in the window if the system is in vk. VAUS is a sampling
method where the systemmoves along the k axis continuously and
hops among the virtual states (see supplementary material S1 and
supplementary Fig. SF1a). The virtual and molecular systems inter-
act to each other [19,22] because potential energy function

involves vk and molecular configurations x. The effective potential
energy of the biomolecular system is

EVAUSðx; vkÞ ¼ Eðx;vkÞ þ RT ln ½Pcðk; vk; TÞ=gðvk; kÞ�; ð1Þ
where E is the original potential energy of the molecular system at
configuration x using an empirical force-field, R is the gas constant.
The term Pc is a canonical probability distribution as a function of k
in virtual state vk, and g is a function introduced to restrain the
biomolecular system in the window of virtual state vk.

If Pc is given in advance, EVAUS is calculated by Eq. (1), and VAUS
simulation is performed using EVAUS. However, Pc is unknown a pri-
ori and therefore, it is determined by an iterative procedure, where
Pc is updated by using the following equation [2]:

ln Pcðk;vk; TÞðcþ1Þ ¼ ln Pcðk;vk; TÞðcÞ þ ln PVAUSðk;vk; TÞðcÞ; ð2Þ
where PVAUSðk; vk; TÞ is observed probability distribution of k in
virtual state vk. The detail of this update procedure is outlined in
supplementary material S1.

2.2. Improvements of VAUS

Although VAUS is a powerful sampling method [16], some
improvements are required. The improvements are aimed at main-
tenance of detailed balance [2] and better approximation of the
distribution functions. In Monte Carlo sampling the detailed bal-
ance is automatically satisfied. In MD, however, it is assumed that
the detailed balance is satisfied if a trajectory is significantly long.
In enhanced sampling schemes, such as VAUS, additional atten-
tions are required.

2.2.1. Markov approximated probability distribution
The trajectory (sequence of recorded k) obtained from an itera-

tion c may not be significantly long, and then, the observed distri-
bution may be different from the equilibrium distribution. To
obtain the equilibrated distribution, a method (e.g. Markov state
model; MSM) that imposes the detailed balance to the trajectory
is required. For this purpose, we assume that even for a short tra-
jectory a configuration propagator follows Markov rules [23–25].
In fact MSM is one of the successful methods to understand equi-
librium dynamics [26–29]. In short, PVAUSðk;vk; TÞ is converted to
PMA
VAUSðk;vk; TÞ in which detailed balance is imposed (supplementary

Fig. SF2).
Next we explain details of the technique. In VAUS, the configu-

ration moves along the k axis by keeping its virtual state at vk for
f int steps of simulation (supplementary information S1, [22]), and
the system can hop to a different virtual state only at the f int-th
step. Hence, a complete VAUS trajectory can be broken to a set of
subtrajectories of length f int and each subtrajectory can be assigned
to a virtual state. Accordingly, MSM consists of two layers; one
layer is composed of transitions among bins along the k axis for
each virtual state (within a subtrajectory), and the other layer is
composed of transitions among virtual states along virtual degree
of freedom. A virtual-state transition probability matrix (X) can
be calculated from the virtual-state sequence, whose ðl; kÞ-th ele-
ment is the virtual-state transition probability Xðv ljvkÞ from vk

to v l (Fig. SF2b). In the other layer, by collecting subtrajectories
belonging to vk, we calculate an intra-state transition probability

matrix Xk
intra whose matrix element Xk

intraðbjjbiÞ provides a transi-
tion probability from bin bi to bj (Fig. SF2b), where bi is i-th bin
in vk.

To compute Xðv ljvkÞ from the virtual-state sequence, a count-
matrix ðCÞ was defined, where Cðvk;v lÞ denotes transition counts
from vk to v l. If the simulation is long enough, an equality stands
theoretically: Cðvk;v lÞ ¼ Cðv l;vkÞ. It is known that the use of
multiple parallel runs increases sampling statistics [16,30,31].

Fig. 1. Equilibrated two Ace-(Ala)5-Nme peptides system (without solvent) used for
initial conformation of simulation. Traces of peptides are shown in magenta, and
atoms are in stick representation with CPK color scheme. Cyan and red spheres are
Ca- and carbonyl O-atoms, respectively. Geometric center of cyan and red-spheres
for each peptide is shown by black sphere, and inter-peptide distance ðkÞ, shown by
broken line, is the distance between the geometric centers (in Å). Thick black
arrows define inter-Ca vector from the first (residue 2) to fifth (residue 6) Ala
residues. Angle between these two vectors is referred by h.
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