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a b s t r a c t

In this work, the thermal expansion behavior and the structure configuration evolution of glasses were
studied. Degree of freedom based on the topological constraint theory is correlated with configuration
evolution; considering the chemical composition and the configuration change, the analytical equation
for calculating the thermal expansion coefficient of glasses from degree of freedomwas derived. The ther-
mal expansion of typical silicate and chalcogenide glasses was examined by calculating their thermal
expansion coefficients (TEC) using the approach stated above. The results showed that this approach
was energetically favorable for glass materials and revealed the corresponding underlying essence from
viewpoint of configuration entropy. This work establishes a configuration-based methodology to calcu-
late the thermal expansion coefficient of glasses that, lack periodic order.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

The study of thermal expansion of materials is increasingly sig-
nificant in both scientific and technological fields [1]. Matching
thermal expansion between different materials is a matter of con-
siderable interest for technicians [2]. Scientific researchers have
been investigating the nature of thermal expansion behavior of
materials for decades [3–7]. However, the essence of glasses’ TEC
still remains to be explored, due to their non-periodic order and
complex structures [8–11]. To achieve the prediction of thermal
expansion properties of glasses, various early empirical approaches
have been explored; for example, the investigation of Demkina
established the equation that describes the relationship between
the TEC and each component of glass material [12]. Aside from
the empirical approaches, the semi-empirical equation deduced
by Makishim et al. from the Gruneisen formula is typically used
[13]. However, Makishim noted, ‘‘Unfortunately, the additive fac-
tors vary for each of the authors”. Molecular dynamics approaches
have been recently developed to interpret the thermal expansion
phenomenon especially for crystalline materials [14–16]. The TEC
of crystalline materials can be accurately calculated due to their
well-defined periodic order. However, the atomic scale modeling
of glasses still remains to be a challenge because of their
disordered structures. Moreover, the thermodynamic stability of

glasses is much larger in terms of time and length required, com-
pared to that of crystals [17,18].

Here we present a model to calculate glasses’ TEC based on
topological constraint theory (TCT), which is established in previ-
ous work by Phillips and Thorpe [19]. Recently, Gupta and Mauro
derived the equation that upon introducing the entropy into TCT
to calculate the glass transition temperature and the liquid fragility
of chalcogenide glasses [20,21]. The difference between oxide and
chalcogenide glasses is observed in the case of their bond types,
particularly that oxide glasses usually contain ionic bonds. Yue
et al. [22,23] and Zeng et al. [24,25] proposed that TCT is also appli-
cable to oxide glasses based on their experimental data, which is
also validated in this paper. An illustration of the hardness comes
from the study of Smedskjaer et al., in which it was shown that
the hardness of glasses can be readily calculated from its constraint
number using TCT [26].

Following a similar strategy, the thermal expansion behavior of
chalcogenide glass systems was studied in the work of Senapati
and Varshneya [27] and Hyung et al. [28]. It has been observed that
the thermal expansion coefficient of a glass material is propor-
tional to its coordination number. Here, a detailed study on differ-
ent glass-forming units was performed rather than on average
sense. The purpose of this work was to unravel the natural connec-
tion between thermal expansion and topological constraints by
introducing configuration entropy and to derive the equation to
calculate the TEC of glasses.

http://dx.doi.org/10.1016/j.cplett.2016.09.001
0009-2614/� 2016 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: hdzeng@ecust.edu.cn (H. Zeng).

Chemical Physics Letters 662 (2016) 268–272

Contents lists available at ScienceDirect

Chemical Physics Letters

journal homepage: www.elsevier .com/locate /cplet t

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cplett.2016.09.001&domain=pdf
http://dx.doi.org/10.1016/j.cplett.2016.09.001
mailto:hdzeng@ecust.edu.cn
http://dx.doi.org/10.1016/j.cplett.2016.09.001
http://www.sciencedirect.com/science/journal/00092614
http://www.elsevier.com/locate/cplett


In Section 2, the methodology and the derivation details are
described. The calculation of TEC using our approach and the
results obtained for the silicate and chalcogenide glasses are pre-
sented in Section 3. The summary is subsequently given in
Section 4.

2. Modelling

A systematic study on thermal expansion behavior, starting
from basic thermodynamic formulas to topological constraints cal-
culations, was performed. Glasses have been intensively studied
before using various approaches focusing on their micro short
and medium-range structures, their macro mechanical, or their
thermodynamic properties [29,30]. In essence, bond stretching
causes the thermal expansion behavior of materials, glass formers
relax with increasing the temperature, which leads to the anhar-
monic vibration of the system [31]. These investigations served
as the basic knowledge for comprehension of glasses’ isotropy fea-
tures, as were adopted in this study. This characteristic allowed for
the modelling of the TEC from the statistical thermodynamics
point of view and provided the prerequisite of the model. The
observation that bulk glasses have fixed thermal expansion coeffi-
cient values at different directions further support this idea. Mod-
els on crystals cannot be directly applied to glasses, but these
approaches gave insight into the treatment of glasses. Summariz-
ing this information about glasses, the basic thermodynamic for-
mula was quoted and the linear correlation of TEC and degrees of
freedom was finally obtained.

A basic thermodynamic formula describes the relation between
internal energy and entropy: dU = TdS-pdV, where T is temperature,
S is the entropy, U is the internal energy, p is the pressure, and V is
the volume. The heat energy absorbed by glasses transforms into
two parts: first is the entropy increase, and the rest corresponds
to the volume work due to the expansion of glasses. For a homoge-
neous system in which the internal energy is U = U (T, V) [32], the
differential form is given by Eq. (1). It includes the treatment which
has the objective to disintegrate the internal energy into two parts,
the first part is isochoric heat capacity, and the second part is
related to the functions in terms of isothermal compressibility
and the volume expansion coefficient. Theoretically, Eq. (1) intro-
duces a method of obtaining the thermodynamic functions related
to the volume expansion coefficient.
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where a is the volume expansion coefficient, and KT is the isother-
mal compressibility coefficient. KT is determined by the composi-
tion of the materials [33]. It represents the quantity with the
same standard compressibility properties, and indicates the ther-
modynamic stability defined by the second derivative of the
changes in volume. With the value of 0 6 KT 61, the thermody-
namic equilibrium of a system can be characterized.
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Combining the basic thermodynamic formula with Eq. (2) gives:

TdS ¼ CVdT � T
a
KT

dV ð3Þ

Naumis provided an approach to introduce thermodynamics into
the topological constraint theory [34]. According to Naumis, the
total entropy of a glass material is composed of the floppy modes
and the different configurations of the system. Note that the

entropy is mainly composed of floppy modes near the softening
temperature; this contribution was accordingly calculated as the
main entropy. Its contribution to the configurational entropy could
be expressed as:

S ¼ NkB lnX
f
1 ð4Þ

where f is the degree of freedom, N is the number of atoms, KB is the
Boltzmann constant, and X1 is the thermodynamic probability. The
TEC of the glasses remains slightly changed under its softening tem-
perature. The average thermal expansion coefficient was calculated
for engineering applications. The temperature range is T0 � T
(between the room and softening temperature). Integrating the
entropy in the range of T0 � T gives:
Z T

T0

dS ¼ NkB lnX1 �
Z T

T0

df : ð5Þ

here NKBlnX1 = n, so dS = ndf, Eq. (3) can therefore be rewritten as:

ndf ¼ CVdlnT � a
KT

dV ð6Þ

There is only one independent variable in Eq. (6), since the volume
is dependent on temperature; therefore, dV = aVdT. So Eq. (6) can be
transformed into:

ndf ¼ CVdlnT � a2V
KT

dT ð7Þ

Using the Gruneisen equation gives:

a ¼ rCV

K0V
ð8Þ

where r is the Gruneisen constant, and K0 is the bulk elastic modu-
lus. Thermal expansivity is one extremely important thermal
parameter, and it is accounted for the Gruneisen’s law of thermody-
namics [35]; Gruneisen’s law of thermodynamics has been
expressed by many researchers in various forms such as Mitra
and Mishra [36], Tolapadi [37]. Here r and K0 are dependent on
the material nature. r = �(lnm/ln V), where m is the frequency of
vibration of the system. Eq. (7) can be rewritten as:
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The reference volume is V0 at temperature T0, so the glass vol-
ume V at temperature T is V = V0+aV0 (T � T0), then
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Integrating Eq. (10) gives:
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Eq. (11) describes the relationship between the degree of freedom
and the TEC. The TEC of glasses is of 10�6 magnitude, so the square
term and the cubic term are much smaller than the linear term,
which gives:

f ffi f 0 þ a
K0V0

nr
ln

T
T0

ð12Þ

K0V0(ln(T/T0))/nr can be treated as constant, since the experiments
were carried out under the same measurement conditions. From
Eq. (12), the value of f can be calculated if a and T are known. a
can be determined from the slope of the linear plot of the thermal
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