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We present an explicit expression of the vibrational partition function for the improved Manning-Rosen
potential energy model. We give analytical expressions for the vibrational mean energy, vibrational
specific heat, vibrational free energy, and vibrational entropy for diatomic molecules. The properties of
these thermodynamic functions for the a>Z}, state of the “Li, molecule are discussed in detail.
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1. Introduction

The lithium dimmer, “Li, or SLiy, is the second smallest stable
homonuclear molecule next to H,, and due to that, it has received
considerable attention both theoretically and experimentally
[1-12]. Since the discovery by Bradley and coworkers [3] of
Bose-Einstein condensation in ’Li,, many efforts have been made
to determine the scattering length of two ground state lithium
atoms from an internuclear potential energy curve of the lowest
triplet a®>X;, state of “Li,. The stability of the “Li, Bose-Einstein con-
densation is sensitive to the last bound vibrational level. ’Li atoms
have a negative s-wave scattering length, it shows that the inter-
atomic interactions are effectively attractive for a sufficiently cold
and dilute gas. Many authors [5-12] have investigated the vibra-
tional levels and the interatomic interaction potential for the
a3} state of ’Li, in terms of the Rydberg-Klein-Rees (RKR) method
[13-15] and ab initio approach [16]. Besides this contribution to
the stability of Bose-Einstein condensation, the major contribution
of vibrations is to temperature-dependent thermodynamic func-
tions through the molecular partition function. However, as far
as we know, one has not reported any investigation on vibrational
contribution to thermodynamic properties of the “Li, molecular
gas. Hence, the main topic of the present work is to carry out avail-
able calculations on the thermodynamic functions for the a®x}
state of Li,.

Analytical representations of thermodynamic functions of gases
over the whole temperature range from zero to the thermal disso-
ciation limit have aroused much interest in dealing with diatomic
and polyatomic systems [17-26]. Vibrational contribution to vari-

* Corresponding author.
E-mail address: chshjia@263.net (C.-S. Jia).

http://dx.doi.org/10.1016/j.cplett.2016.11.059
0009-2614/© 2016 Published by Elsevier B.V.

ous thermodynamic properties of a molecular gas is expressed by
using a partition function and its first two derivatives with respect
to temperature. The vibrational partition function can be calcu-
lated in terms of molecular vibrational energy levels. Rotation-
vibrational energy levels for diatomic molecules can be obtained
from the direct solutions of the Schrodinger equation with dia-
tomic molecule potential energy models [11,12]. The improved
Manning-Rosen potential model [27] can well model the interac-
tion potential curve for the a®>T} state of the Li, molecule [11].
The average absolute deviation of the improved Manning-Rosen
potential for the a>Z}, state of ’Li, from the ab initio potential
reported by Halls et al. [6] is 0.178% of dissociation energy D,
[11]. This situation encourages us to apply rotation-vibrational
energy level expressions derived in the previous work [11] to cal-
culate the partition function of fundamental vibrations, and inves-
tigate thermodynamic properties for the lithium dimer.

2. Thermodynamic properties of a diatomic molecule

Based on a diatomic potential function proposed by Manning
and Rosen [28]|, Wang et al. [27] proposed the improved
Manning-Rosen potential model for diatomic molecules,
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where r the internuclear separation, r. is the equilibrium bond
length, D, is the dissociation energy, and « is a adjustable parame-
ter, which governs the range of the interaction. Conventionally,
the range decreases as o increases. The potential parameter o

can be determined by employing the expression o = ncwe\/ng
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e is the equilibrium harmonic vibrational frequency, and W is the
Lambert W function, which satisfies z = W(z)e"® [29]. By solving
the Schrédinger equation with the improved Manning-Rosen poten-
tial, Liu et al. [11] obtained the rotation-vibrational energy level
expression for a diatomic molecule represented by the same poten-
tial model. It is given by [11]
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where v=0,1,2,3,..., Umax, M is the reduced mass of a diatomic
molecule, ii denotes the reduced Planck constant, v and J are the
vibrational and rotational quantum numbers, respectively. The
upper bound vibration quantum number vn. reads as

Umax = { (1 + \/(1 +2))° +W>} [n] means

the biggest integer inferior to n. The pure vibrational energy levels
can be written as
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Partition functions are the starting point to derive thermody-
namic data. The vibrational partition function can be calculated
by direct summation over all possible vibrational energy levels
available to the system,
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where g =, k is the Boltzmann’s constant, and T is the tempera-

ture. Substituting expression (3) into Eq. (4), we have
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For a finite summation with the upper bound N, the Poisson
summation formula can be written as [18]
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Under the lowest-order approximation, the above summation
formula becomes the following form

N N+1
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With the help of expression (7), we write Eq. (5) in the following
form
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¢ =$-35 and ¢; = ;% — b The integral in the right-
hand side of Eq. (8) is expressed in terms of the imaginary error
function. After some manipulations, we obtain the following

expression of the vibrational partition function for a diatomic mole-

cule represented by the improved Manning-Rosen potential energy
model,
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The imaginary error function, denoted erfi, is defined as [30]
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where erf denotes the error function, which is a special function of
sigmoid shape. The imaginary error function is implemented in
Maple as erfi(z), and can easily be calculated numerically.

In deducing expression (9) from Eq. (5), we have used the
lowest-order approximation which retains only the term with
m = 0 in Eq. (6). This term is recognized as the classical partition
function, the terms with m # 0 give the quantum corrections
[18]. The partition function (9) is the classical vibrational partition
function, all quantum corrections are omitted. At high tempera-
tures, when g < 1, expression (9) of the vibrational partition func-
tion Q can be represented as a power series,
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With the help of the vibrational partition function, one can

determine the thermodynamic functions for the diatomic molecule
system by using following formulas:

(1) Vibrational mean energy U
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