
Accepted Manuscript

Research paper

Numerical investigation of nanofluid transportation in a curved cavity in existence of magnetic source

Mohsen Sheikholeslami, Davood Domiri Ganji

PII: DOI: Reference:	S0009-2614(16)30895-8 http://dx.doi.org/10.1016/j.cplett.2016.11.013 CPLETT 34320
To appear in:	Chemical Physics Letters
Received Date: Revised Date: Accepted Date:	24 September 20165 November 20168 November 2016

Please cite this article as: M. Sheikholeslami, D.D. Ganji, Numerical investigation of nanofluid transportation in a curved cavity in existence of magnetic source, *Chemical Physics Letters* (2016), doi: http://dx.doi.org/10.1016/j.cplett.2016.11.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Numerical investigation of nanofluid transportation in a curved cavity in existence of magnetic source

Mohsen Sheikholeslami¹, Davood Domiri Ganji

Department of Mechanical Engineering, Babol University of Technology, Babol, IRAN

Abstract

Thermal radiation impact on magnetic nanofluid heat transfer in a curved cavity is studied. Impact of external magnetic source is taken into account. Innovative numerical method is chosen namely CVFEM. Impacts of radiation parameter (Rd), Rayleigh (Ra), Hartmann (Ha) numbers and volume fraction of Fe₃O₄ (ϕ) on hydrothermal treatment are examined. Results indicate that temperature gradient enhances with augment of Ra, ϕ , but it reduces with rise of Rd, Ha. Lorentz forces cause the nanofluid velocity to reduce and augment the thermal boundary layer thickness. Impact of radiation becomes stronger for higher buoyancy forces.

Keywords: Thermal radiation; Magnetic Nanofluid; Heat transfer; Free convection.

Nomenclature

В	Magnetic induction	α	Thermal diffusivity
Ec	Eckert number	$\Omega\&\Psi$	dimensionless vorticity & stream
	0		function
Н	The magnetic field strength	Θ	dimensionless temperature
\rightarrow	Gravitational acceleration vector	ρ	Fluid density
g			
Nu	Nusselt number	μ	Dynamic viscosity
На	Hartmann number	σ	Electrical conductivity
Т	Fluid temperature	Subscrip	ts
Ra	Rayleigh number	nf	Nanofluid
V , U	Vertical and horizontal	f	Base fluid
	dimensionless velocity		
Y,X	Vertical and horizontal space	loc	Local

¹Corresponding Author:

Email: mohsen.sheikholeslami@yahoo.com (Mohsen Sheikholeslami), mirgang@nit.ac.ir (Davood Domiri Ganji)

Download English Version:

https://daneshyari.com/en/article/5378508

Download Persian Version:

https://daneshyari.com/article/5378508

Daneshyari.com