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a b s t r a c t

Multiscale enhanced sampling (MSES) calculates the configurational ensemble of all-atom (MM) protein
systems with the help of coupling to a coarse-grained (CG) model. Here, for further improvement of the
sampling efficiency, the approximation of adiabatic separation was introduced to the original MSES, by
adopting a high CG temperature limit. An application to the folding of chignolin in explicit solvent
demonstrated that the MSES formula based on adiabatic separation correctly sampled the canonical
ensemble with excellent efficiency and robustness against the parameter selection, and thus MSES suc-
cessfully achieved the scalability for applications to large protein systems.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the computational point of view, comprehensive understand-
ing of protein functional dynamics requires the calculation of the
associated free energy landscape, or the well-converged structural
ensemble in the space of related dynamical variables. Due to the
large computational burden, however, the evaluation of a free
energy landscape still remains challenging for large protein sys-
tems. Large-scale structural sampling of protein systems has fre-
quently been attained by the help of ‘‘enhanced sampling”. The
temperature replica exchange and related methods [1–4] are the
best known methods to enhance sampling, because of their broad
applicability. However, since these methods simply attempt to
enhance the sampling by increasing the temperature of the whole
system, one inevitably encounters difficulties in applications to
large systems. The other class of enhanced sampling methods,
including umbrella sampling [5], conformational flooding [6],
metadynamics [7] and temperature accelerated molecular dynam-
ics [8], enhances the sampling along pre-defined small dimensional
‘‘reaction coordinates” or ‘‘collective variables (CV)”. The difficulty
in the applications of these methods is that the knowledge of the
proper reaction coordinates is prerequisite for successful sampling.

To alleviate these problems in the two types of sampling meth-
ods, we have developed ‘‘multiscale enhanced sampling (MSES)”,
in which the sampling of the all-atom model is enhanced by the

coupling with the associated coarse-grained (CG) model, moving
on a substantially smoothed potential energy surface with reduced
dimensionality [9–12]. The multiscale system is composed of an
all-atom system containing protein molecules and surrounding
solvents (MM; the coordinates, rMM), and the corresponding
coarse-grained system (rCG) that is defined flexibly, according to
prior knowledge or experimental information. The potential
energy of the multiscale system, V, is given by

VðrMM; rCG; kÞ ¼ VMMðrMMÞ þ VCGðrCGÞ þ VMMCG; ð1Þ

with the coupling term between MM and CG, VMMCG, as follows:

VMMCG ¼ kMMCG½vMMðrMMÞ � vCGðrCGÞ�2: ð2Þ

VMM and VCG are the potential energy functions for MM and CG,
respectively. In this scheme, the number of degrees of freedom in
CG, M, is by definition much smaller than that in MM, N. VMMCG is
described by harmonic constraints with a force constant kMMCG

for K variables, vCG, that are defined from the CG coordinates. The
K-dimensional vector vMM is a projection of rMM onto the
K-dimensional space. The dimension K is then taken so as to satisfy
the condition, K <M� N, and also can be set to be much larger than
the number of CVs in the second class of the sampling methods
[5–8] described above.

The target quantity calculated in the MSES is the unbiased free
energy surface originating solely from the MM potential,
VMM, unlike the second class of the sampling methods that attempt
to obtain the free energy surfaces along the pre-defined CVs by
simulating at a sufficiently large value of kMMCG. For this purpose,
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it is necessary to derive the joint distribution related not
only to the configuration (rMM, rCG) but also to the coupling
constant kMMCG as an extended-system variable; i.e.,
qðrMM; rCG; kMMCGÞ / expð�bVÞ, which allows the system to be
extrapolated to kMMCG = 0. Here, to explain the MSES method and
its extension, we follow the formulation of ‘‘Gibbs sampling”
[13,14]. Gibbs sampling is an algorithm to generate the probability
distribution of a multivariate system, by sampling each variable
separately in an iterative manner by the use of the conditional
probability. The Gibbs sampling process of MSES proceeds as fol-
lows. In the first step of the iteration, the coordinates of the system,
(rMM, rCG), are sampled by an MD simulation with a fixed value of
kMMCG under the conditional probability of

qðrMM; rCGjkMMCGÞ ¼ expð�bVÞ=ZðkMMCGÞ; ð3Þ
where b is the inverse temperature, and ZðkMMCGÞ �R
drMMdrCG expð�bVÞ is treated as the state-dependent

(the kMMCG-dependent) weighting factor in Gibbs sampling [14].
In the MD simulation of (rMM, rCG), the value of kMMCG is fixed,
and thus Z is taken as a constant. In the second step, the sampling
in terms of kMMCG is carried out by Markov chain Monte Carlo
(MCMC) simulations for discretized values of kMMCG, by introducing
many replicated systems with various values of kMMCG ranging from
a large value to zero, and by exchanging the kMMCG values between
neighboring replicas. This sampling scheme is called Hamiltonian
replica exchange [15]. Suppose the exchange between the neighbor-
ing replicas of system m with the conditional probability of
q kmMMCGjrmMM; r
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balance condition is then given by

pmn ¼ minð1; expðDmnÞÞ; ð4Þ
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and

qðkMMCGjrMM; rCGÞ ¼ expð�bVÞ=ZðrMM; rCGÞ; ð6Þ
where ZðrMM; rCGÞ �

R
dkMMCG expð�bVÞ. In Eq. (5), the weighting

factors, ZðrmMM; r
m
CGÞ and ZðrnMM; r

n
CGÞ, are canceled out between the

numerator and the denominator. Eq. (5) shows that the probability
is determined by the difference between vMM and vCG, defined in
the K-dimensional space. Since K� N, Dmn is kept small enough
to provide a high exchange probability pmn, irrespective of the size
of the MM system. This guarantees high scalability as compared
with the conventional temperature replica exchange method,
where the difference in the potential energy of MM (scaling up to
N2) determines the exchange probabilityDmn. An extension of MSES
using multiple CG copies for a single MM systemwas also proposed,
and was found to improve the sampling efficiency [12].

In the present study, another extension is proposed for the fur-
ther improvement of the sampling efficiency, by strengthening the
CG’s driving force for MM. Since CG has to accelerate MM with
large degrees of freedom and a complicated interaction energy,
reinforcing the driving force for MM is a key factor to improve
the sampling power. For this purpose, we now introduce the
approximation of ‘‘adiabatic separation” that has been widely used
in various systems, including proteins [8,16–18]. Adiabatic separa-
tion imposes the condition that CG moves much slower than MM

or the mass of CG is sufficiently heavier than that of MM. To
improve sampling efficiency, the temperature of CG, TCG, is set to
be much higher than that of MM, or b0 (=1/kBTCG)� b, so that CG
may easily drive MM. Under these conditions, the CG simulation
at b0 with the coupling to MM generates the conditional probability
for CG, given in the form of the potential of mean force of MM
[8,16],

qðrCGjkMMCGÞ ¼
Z

drMM expð�bVÞ
� 	b0=b,

ZðkMMCGÞ

¼ exp½�b0VCGðrCGÞ�ZðrCG; kMMCGÞb
0=b
.
ZðkMMCGÞ;

ð7Þ

with

ZðrCG; kMMCGÞ �
Z

drMM expð�b½VMMðrMMÞ þ VMMCGðrMM; rCG; kMMCGÞ�Þ;
ð8Þ

ZðkMMCGÞ �
Z

drCG exp½�b0VCGðrCGÞ�ZðrCG; kMMCGÞb
0=b
: ð9Þ

Meanwhile, MM evolves with a given CG on the conditional
probability [8],

qðrMMjrCG; kMMCGÞ ¼ expð�b½VMMðrMMÞ
þ VMMCGðrMM; rCG; kMMCGÞ�Þ=ZðrCG; kMMCGÞ:

ð10Þ
The conditional probability for MM and CG at a given value of

kMMCG is therefore,

qðrMM; rCGjkMMCGÞ ¼ qðrMMjrCG; kMMCGÞqðrCGjkMMCGÞ
¼ expð�b½VMMðrMMÞ þ VMMCGðrMM; rCG; kMMCGÞ�
� b0VCGðrCGÞÞZðrCG; kMMCGÞ

b0
b�1

=ZðkMMCGÞ:
ð11Þ

Note that Eq. (11) reduces back to the original form of Eq. (3) when
b0 = b. qðkMMCGjrMM; rCGÞ is derived by changing the denominator of
Eq. (11) from ZðkMMCGÞ to ZðrMM; rCGÞ, and then we have the
exchange probability,

pmn ¼ minð1; expðD0
mnÞÞ ð12Þ
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where Dmn is the term defined in Eq. (5). The assumption of adia-
batic separation turns out to be the addition of the second term
of Eq. (13), which is not easy to evaluate.

To circumvent the difficulty in the evaluation of the second
term of Eq. (13), we consider the high temperature limit of adia-
batic separation, or b0/b? 0. At this limit, the conditional probabil-
ity of Eq. (7) becomes independent of the influence from the
potential of mean force of MM, and CG behaves freely from MM;
that is,

qðrCGjkMMCGÞ � exp½�b0 VCGðrCGÞ�: ð14Þ
When the CG motion is generated by Eq. (14), it is now possible

to set the replicated systems of the MCMC simulation consisting of
many MMs driven by a single copy of CG, or rmCG ¼ rnCG (Fig. 1). Under
these conditions, the exchange probability can be reduced from Eq.
(13) back to Eq. (5). The present extension of MSES produces the
largest driving force of MM, because CG can move freely without
feeling the counter force from the potential of mean force of MM.
In summary, the simulation process consists of the iterated pro-
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