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Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapola-
tion of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares
regression to fit previous steps’ Fock or density matrix elements. In this work, the recursive Burg ‘linear
prediction’ technique is shown to be a viable alternative to polynomial regression, and the extrapolation-
predicted Fock matrix elements were three orders of magnitude closer to converged elements.
Accelerations of 1.8-3.4x were observed in test systems, and in all cases, linear prediction outperformed
polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD inte-
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1. Introduction

Ab initio molecular dynamics (AIMD) simulation techniques
employ ‘on-the-fly’ generation of quantum chemistry molecular
forces to propagate classical molecular dynamics trajectories on
the Born-Oppenheimer potential energy surface. The ability to
accurately capture strong polarization, charge transfer, and bond-
breaking/-making events motivates the use of such techniques in
chemical simulations of real-time dynamics, equilibrium sampling,
and spectroscopic response. However, the many-orders-of-
magnitude cost increase of AIMD, relative to commonly used
molecular mechanics force fields, makes such simulations a daunt-
ing computational challenge for complex molecular systems.

Density-functional theory [1] (DFT) is the most commonly used
quantum chemistry method for large AIMD simulations, although
Mpller-Plesset perturbation theory [2]| (MP2)-based simulations
have also been performed. For Kohn-Sham DFT or the underlying
Hartree-Fock (HF) calculation for MP2, a non-linear, self-
consistent field (SCF) optimization procedure is solved iteratively
[3], leading to an overall computational prefactor that is
determined by the number of SCF cycles required for convergence
to a chosen tolerance. Although advanced integral evaluation tech-
niques [4,5] tackle the scaling of these simulations with respect to
the size of the system, motivation remains to reduce the SCF-based
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prefactor, particularly for molecular systems that are large, open-
shell, and/or undergoing bond-rearrangement events.

The small timesteps required for AIMD trajectories (<0.5 fs for
hydrogen-containing systems) suggest that the bulk of the elec-
tronic structure has not appreciably changed between neighboring
timesteps. Restarting the SCF procedure anew from a typically poor
initial guess, therefore, would appear to be computationally waste-
ful. This notion has motivated two diverging routes to accelerating
MD simulations.

One option is the propagation of electronic information to the
next timestep. Extended-Lagrangian MD (ELMD) methods [6-8]
accelerate—or altogether avoid—the SCF procedure by propagating
Fock or density matrix information. Fidelity with the true Born-
Oppenheimer surface is approximated through the extended-
Lagrangian formalism. One often-cited advantage of this approach
is the rigorous enforcement of total energy conservation. Tradeoffs
include the need for typically smaller MD timesteps (thereby
reducing the effectiveness of the computational acceleration),
choice of a fictitious mass, and the potential for electronic ‘lag’ arti-
facts [8-10] that can appear in observables, such as vibrational
spectra. More recent implementations [11-16] successfully bridge
the ELMD-BOMD divide, although stable propagation of the elec-
tronic variables for reactive systems remains an area of active
research. One of the clear advantages to time-reversibly propagat-
ing electronic information has been the demonstration by Niklas-
son that the SCF procedure does not need to be converged
tightly—sometimes requiring only a single SCF step [13,15]—in
order to produce energy-conserving trajectories.
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The second option involves extrapolation of electronic informa-
tion from previous timesteps. Motivated by the observation that
Fock matrix elements, for example, are simple oscillatory functions
of time, these approaches attempt to fit previous timesteps’ infor-
mation to a simple form that can be used as an improved initial
guess for the SCF procedure [17-20]. This approach allows for
longer timesteps while still reducing the number of requisite SCF
cycles. In its simplest version, this approach uses the converged
Fock matrix from the previous timestep as this initial guess, which
is consistent with the intuitive notion that the electronic structure
has not changed appreciably. However, as has been noted in previ-
ous analyses [18], such a choice quickly fails when loose SCF con-
vergence settings are employed. The use of the previous step’s Fock
matrix introduces a hysteresis effect that leads to rather severe
non-conservation of the energy. Over only short trajectories, the
energy drift swamps the inherent energy fluctuations of the chosen
integration scheme. While higher-order polynomials somewhat
dampen this energy-conservation concern, its effects should even-
tually be borne out in long MD trajectories since the history-
dependent guess renders the propagator formally non-
symplectic. The practical cure to this pathology, of course, is to
more tightly converge the SCF procedure. As will be shown below,
this approach rectifies energy-drift concerns for very long trajecto-
ries (by AIMD standards), but it also necessarily leads to additional
computational cost overhead.

The single SCF cycle performed in the ‘propagation’ approach
could potentially lead to unstable electronic states for slow-to-
converge SCF cases, such as open-shell ions or systems near
bond-arrangement events, and these cases require additional test-
ing in the literature. Because of our interest in these difficult sys-
tems [21]|, the present analysis focuses solely on the
‘extrapolation’ approach, with the intent of improving existing
acceleration techniques within tight SCF convergence settings. An
investigation into whether the behavior observed in the present
analysis can be combined with rigorously time-reversible propaga-
tors is reserved for future studies.

Existing Fock extrapolation techniques employ a polynomial
least-squares regression (PLSR) of N previous timesteps’ informa-
tion, to a polynomial of a chosen order O. A recent analysis [22]
has shown that an optimal N may exist, at least for a given time-
step and chemical system, although no assessment of O-
dependence was performed. Nonetheless, past studies have shown
that with only a handful of previous steps’ data, roughly 2-fold
reductions in the number of Fock builds can be achieved. Extension
to MP2 simulations, in both the SCF and gradient response terms,
has also been demonstrated [23].

While this standard PLSR approach is appropriate for accurately
fitting the data within the chosen time window, it is decidedly not
optimal for extrapolating information outside of this window.
Given that the Fock data throughout an MD trajectory is locally
oscillatory (with some slight noise, stemming from incomplete
convergence) and globally stochastic, techniques that are well-
suited to signal prediction were conjectured to be a better choice.
In particular, so-called linear prediction techniques—not to be con-
fused with linear PLSR extrapolation (O = 1)—are designed to accu-
rately represent exactly this type of behavior. This study presents
an implementation of the Burg Linear Prediction (BLP) algorithm
for Fock extrapolation, as well as rigorous tests of its efficacy and
efficiency for accelerating AIMD simulations.

2. Methods

The basic components of the BLP algorithm are presented in this
section, including a discussion of the distinguishing features of the
BLP and PLSR approaches. This presentation is followed by a

description of the techniques used to assess the methods through-
out the remainder of the study.

2.1. Burg Linear Prediction

The BLP algorithm [24,25], in an extrapolated AIMD context, fits
N previous timesteps’ atomic-orbital (AO) basis Fock matrix ele-
ments to a recursive series with L coefficients forward [f] in time:

L

FIL(t) = ciFu(t —i) (1)
i=1

The Burg algorithm augments this simpler Levinson-Durbin

recursion definition by also considering a fit to backward [b]
predictions:

L

FBL(6) = ciFun(t+1) (2)

i=1

In this notation, the predicted element is denoted as F, and ¢
acts as a timestep index, rather than a physical simulation time.
In all analyses performed in this work, the timesteps were evenly
spaced, although the LPB prescription is not restricted to this form.
The coefficients are obtained using linear least-squares minimiza-
tion of the sum of the forward and backward mean-square devia-
tions, 2, defined over the fitting length N as
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This optimization of y? = %21+ »?(®], rather than x?!1 alone, dis-
tinguishes BLP from simpler recursion approaches and introduces
considerable stability to the method. Further algorithmic details
can be found in standard numerical texts, including the one used
in the present implementation [24].

The BLP algorithm, therefore, generates a weighted linear com-
bination of existing Fock matrix elements. In this sense, it is super-
ficially similar to a PLSR fit,

[0]
FL( => ¢t (5)
i=0

However, as will be shown below, the BLP algorithm was found
to be much more powerful for extrapolation purposes. For sums of
Fourier signals, for example, preliminary tests of this approach
yielded nearly quantitative reproduction of the signal for thou-
sands of extrapolated signal cycles, rather than the 1-2 that was
afforded with PLSR. Of course, in an AIMD context, the fit will be
recomputed at each timestep, meaning that the algorithm only
needs to be accurate to the next timestep. Even in this regime,
though, the BLP approach led to several-orders-of-magnitude
reductions in error for values of this subsequent step.

The use of PLSR requires a choice of N and O, compactly notated
in the remainder of this work an (N,O) extrapolation. Commonly
used choices in previous studies [17,18] included (4,2) to (20,10)
extrapolations. Since this approach is intended as an extrapolation,
rather than a fit, increases in N or O do not necessarily yield better
SCF guesses, and the optimal choice is often simulation-specific
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