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a b s t r a c t

In our previous letter (Kimura, 2016), we constructed time-dependent renormalized Redfield theory
(TRRT) only for diagonal transition in a reduced density matrix. In this letter, we formulate the general
expression for off-diagonal transition in the reduced density matrix. We discuss the applicability of
TRRT by numerically comparing the dependencies on the energy gap of the exciton relaxation rate by
using the TRRT and the modified Redfield theory (MRT). In particular, we roughly show that TRRT
improves MRT for the detailed balance about the excitation energy transfer reaction.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Photosynthesis converts photo-energy into bio-energy in the
form of carbohydrates. In the initial stages of photosynthesis,
immediately following the absorption of photons, the electroni-
cally excited state of chlorophyll in the antenna protein is trans-
ferred to a reaction center with high quantum yield through
strategies that remain unknown. The quantum effect of excitation
energy transfer in the antenna system has recently been reported
[1–3]. In particular, long-lasting quantum coherence via nuclear
vibrations in photosynthetic antennas at room temperature has
been the focus of research, and has been treated experimentally
as well as theoretically [4].

When exciton coupling strength Ve is much smaller than the
reorganization energy k as Ve � k, the localized excitation state
as the donor molecule transfers to an energetically lower exciton
state as the acceptor molecule. The excitation transfer rate has
been expressed by Förster [5]. In the opposite limiting case
(Ve � k), the exciton state delocalizes in the system, and the relax-
ation process to the energetically lower delocalized exciton states
occurs. The relaxation process can be expressed by Redfield theory
[6].

While such a limiting case is easily treatable using a simple per-
turbation method, it is difficult to apply the perturbation method
to it, especially in the case of intermediate coupling [4,7]. For such
situations, Zhang et al. modified Redfield theory. The modified Red-
field theory (MRT) treats electronic off-diagonal elements in

exciton-phonon interaction as a perturbation term [8,9]. In recent
theoretical developments, a coherent modified Redfield theory
(CMRT) was constructed by Hwang-Fu et al. [10,11] and was
applied to the analysis of the energy transfer pathway in photosyn-
thetic antenna systems [12].

We recently constructed a time-dependent renormalized Red-
field theory (TRRT) and derived a formula to represent the exciton
relaxation rate [13]. However, the rate formula could not analyze
the physics of quantum coherence in such photosynthetic antenna
systems due to the rate formula between the diagonal elements of
the reduced density matrix element for delocalized exciton repre-
sentation. Hence, in this letter, we extend the formalism of the pre-
viously expressed rate to analyze the transition rate between off-
diagonal elements in the system.

The quantum master equation for the reduced density matrix
element under second-order perturbative approximation by inter-
action representation is expressed by using the Nakajima-Zwanzig
equation as [14,15]

i�h
@PqIðtÞ

@t
¼ P½VIðtÞ;QqIð0Þ� þ P½VIðtÞ;PqIðtÞ�

� i
�h

Z t

0
dt0P½VIðtÞ;Q½VIðt0Þ;PqIðt0Þ� ð1Þ

where P is the projection operator PA � qbTr½A�. qb is expressed as
e�bHB=Tr½e�bHB �. HB is phonon-bath Hamiltonian. The operator VIðtÞ is
perturbative Hamiltonian with interaction representation defined

as eiH0t=�hVe�iH0t=�h. The first term on the r.h.s. is an inhomogeneous
term, which can be neglected due to proper initial conditions
obtaining in the reduced density matrix. The third term of r.h.s.
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represent dissipation, which is expressed by the time correlation of
the perturbative Hamiltonian with interaction representation VIðtÞ.
The second term of the r.h.s. has been neglected by comparing the
result according to the quantum master equation with that
obtained by using numerically exact calculation. This elimination
simplifies the equation of motion. However, it cannot be easily jus-
tified [16]. By using the renormalization approach, the time correla-
tion function in the dissipation term of the quantum master
equation becomes the formalism of the variance-covariance matrix.
However, in case of interaction representation for the quantum
master equation, it is difficult to analyze the temporal propagation
of the reduced matrix element by Schrödinger representation. The
CMRT overcomes this problem by dividing the quantum master
equation into a coherent term and a dissipation term. The time-
dependent renormalization approach in this letter improves the dis-
sipation term in the CMRT.

In the remainder of this letter, the model Hamiltonian and ana-
lytical strategies are stated in Section 2. The requisite numerical
analysis is conducted in Section 3. In Section 4, we discuss some
findings and the conclusions that can be drawn from them. The
details of the analytical expression are presented in Appendices.

2. Theory

2.1. Hamiltonian

Let us define the total Hamiltonian of the system. We express
the ket vector jni as the electronic excited state at the nth site,
where the electronic site energy is En. The exciton coupling
strength between the nth and mth molecules is expressed by
Ve

nm. We introduce the pure exciton Hamiltonian asP
nEnjnihnj þ

P
n–mV

e
nm½jnihmj þ jmihnj�� �jli ¼ Eljli where jli is

the ket vector in the pure exciton representation expressed by
the site representation as

jli ¼
X
n

Cln jni: ð2Þ

For nuclear motion, we only consider the phonon bath, where
the creation (annihilation) operator for the kth phonon mode is

expressed as by
k (bk), the frequency of which is xk. Finally, gnk is

introduced as the exciton-phonon coupling strength at the nth
excited state: We introduce exciton-phonon coupling using pure
exciton representation as

Glm
k ¼

X
n

ClnC
m
ngnk: ð3Þ

Hence, the total Hamiltonian based on pure exciton representation
can be expressed as H ¼ H0 þ V

H ¼ H0 þ V ; ð4Þ
H0 ¼

X
l
½El þ HB þ Bll�jlihlj; ð5Þ

V ¼
X
l–m

Blmjlihmj; ð6Þ

where HB ¼ P
k �hxkb

y
kbk is the phonon-bath Hamiltonian. Here, Blm

is defined as

Blm ¼
X
k

Glm
k by

k þ bk

� �
: ð7Þ

We now introduce the shift operator h � eS, where S is defined
as

S ¼
X
l
Sll ¼

X
lk

Gll
k

�hxk
by
k � bk

� �
jlihlj: ð8Þ

Using the shift operator, we apply a unitary transformation from Eq.
(4) to the total Hamiltonian as hHhy ¼ HR

0ðtÞ þ VRðtÞ as in Section 2.3.

2.2. Renormalization strategy

We divide the total Hamiltonian H into two parts, renormalized
non-perturbative Hamiltonian and its perturbative Hamiltonian as
HR

0ðtÞ þ VRðtÞ, in advance. Based on the zeroth-order propagator

UðtoÞ as expþ � i
�h

R t
0 dt1H

R
0ðt1Þ

h i
, by re-introducing the shift operator,

we obtain a first-order expansion of the unitary-transformed prop-
agator e�iHt=�h as

hf jhye�iHt=�hhjii ¼ hf jhyUðtÞhjii � i
�h

Z t

0
dt1hf jhyUðtÞVR

I ðt1Þhjii; ð9Þ

where we take the element in the electronic state, and VR
I ðtÞ is the

interaction representation of VRðtÞ, defined as UyðtÞVRðtÞUðtÞ.
The reduced density operator is expressed as

qðtÞ ¼ Tr½hf jhye�iHt=�hhjiiqbhi0jhyeiHt=�hhjf 0i�; ð10Þ
where qb is defined as e�bHB=Tr½e�bHB �. Inserting Eq. (9) into Eq. (10),
we obtain

qðtÞ ¼ h1;1it �
i
�h

Z t

0
dt1 h1;VR

I ðt1Þit � hVRy
I ðt1Þ;1it

h i

þ 1
�h2

Z t

0
dt1

Z t

0
dt01hVRy

I t01
� �

;VR
I ðt1Þit; ð11Þ

where we introduce the new bracket as

hA;Bit � Tr½hi0jhyAUyðtÞhjf 0ihf jhyUðtÞBhjiiqb�: ð12Þ
Apparently, in order to eliminate the first order term of the r.h.s. in
Eq. (11), we need to introduce the average interaction Hamiltonian,
which is independent of the phonon operator but depends on the
electronic exciton states. In addition, the average interaction
Hamiltonian needs to be a function of two type variables for time.
One is the integral variable t1; the other is the artificially observing
time t. Hence, we redefine renormalized nonperturbative Hamilto-
nian HR

0ðt1Þ � H0ðt1Þ þ vcðt1; tÞ, and renormalized perturbative

Hamiltonian as VRðt1Þ � V0ðt1Þ � vcðt1; tÞ. The average matrix ele-
ment vcðt; t1Þ is determined to satisfy the relation as
h1;VR

I ðt1Þit ¼ hVRy
I ðt1Þ;1it ¼ 0.

2.3. Renormalized Hamiltonian

Introducing the c-number as the strength of time-dependent
interaction vclmðt; t0Þ and the renormalized exciton state jaðtÞi as
below, we define the non-perturbative renormalized Hamiltonian
HR

0 as

HR
0ðtÞ ¼

X
a

�0aðtÞ þ HB
� �jaðtÞihaðtÞj; ð13Þ

X
l
�ljlihlj þ

Xl–m
lm
vclmðt; t0Þjlihmj

" #
jaðtÞi ¼ �0aðtÞjaðtÞi; ð14Þ

where the nuclear-relaxed exciton energy �l is defined as

�l ¼ El �
X
k

Gll
k

2
=ð�hxkÞ: ð15Þ

The renormalized perturbative Hamiltonian VRðtÞ is defined as

VRðtÞ ¼
Xl–m
lm

½vqlm � vclmðt; t0Þ�jlihmj; ð16Þ

vqlm � hlBlmh
y
m; ð17Þ
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