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a b s t r a c t

Using the expansion in the eigenmodes of 1-D Lienard-Wiechert kernel, the temporal and spectral
profiles of the radiation emitted by a fully inverted collection of two-level atoms in a sub-wavelength slab
geometry are computed. The initial number of amplifying modes determine the specific regime of
radiation. In particular, the temporal profile of the field intensity is oscillatory and the spectral profile
is non-Lorentzian with two unequal height peaks in a narrow band centered at the slab thickness value
at which the real parts of the lowest order odd and even eigenvalues are equal.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Following similar steps to those found in Feynman and Dyson’s
seminal work in quantum electrodynamics [1,2] we computed
using field theoretical techniques, the atomic and photonic
self-energies in an ensemble of dense homogeneously broadened
two-level atoms [3,4]. The real part of the reducible atomic
self-energy generalized the expression derived by Dicke for the
superradiant lifetime of very small samples (as compared to the
atomic transition wavelength) [5], to also samples with slab and
spherical geometries having sizes equal or larger than the
transition wavelength. The imaginary part of the reducible atomic
self-energy, dubbed the Cooperative Lamb Shift because of it
having similar origin as the isolated atom Lamb shift [6], except
that in this instance, to lowest order of perturbation theory the
photon is not emitted and absorbed by the same atom but by
two different atoms of the same ensemble, was also computed
for the slab and spherical geometries. The expression for the
Cooperative Lamb Shift obtained in [3] for the slab correctly
predicted the results observed in milestone experiments recently
performed at DESY [7] and at Durham [8].

For weak fields and weak initial atomic excitation, the effect of
including one-photon exchange is, inter alia, to modify the location
of the pole in the complex plane of the spectral distribution of the
transmission coefficient in a slab from its location in the expression
of the dielectric constant.

In the nonlinear regime, while the reduced atomic self-energy
still represents the rate of change of the power loss from the
atomic system at initial time [9]; the spectral distribution of the
superradiant emission from an inverted system can be obtained
only if one knew the solutions of the coupled Maxwell-Bloch
(MB) equations for the system.

However, the MB system of partial differential equations is
non-linear and is in general not amenable to an analytical solution
except under severe simplifying assumptions such as including
only a single mode in the plane-wave expansion of the electromag-
netic field, making the Rotating-Wave-Approximation, the Slowly
Varying Envelope Approximation in Space in Maxwell equation,
and/or neglecting the relaxation terms in both the diagonal and
off-diagonal elements of the atomic density matrix of Bloch
equations. All terms that are neglected under these different
approximations are kept in the present calculations.

For the purpose of solving the MB system in 1-space, 1-time
dimensions, it was found convenient to expand the dynamical
variables in the complete basis formed by the eigenfunctions of
the Lienard-Wiechert kernel [10]. This expansion allowed the
reduction of the MB system of partial differential equations into
an equivalent system of infinite system of coupled ordinary
differential equations [11] which can be easily solved by standard
computer routines. This mathematical reformulation of the prob-
lem also allowed a more efficient and accurate determination of
the solutions of the MB and it further provided the tools for achiev-
ing better transparency in analyzing physically the obtained
numerical solutions.
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In this paper, i use the above steps of reducing the MB system of
partial differential equations to a system of infinite ordinary differ-
ential equations to compute for an initially inverted system the tem-
poral and spectral profiles of the radiation emitted from a slab as
function of the slab thickness, when this later quantity is smaller
than the radiation wavelength. The interest in this regime is moti-
vated by a desire to obtain an expression for the Cooperative Lamb
Shift for an inverted system and by the recent investigations in
nano-photonics,where itwasobserved that theemission line shapes
are non-Lorentzian and have two unequal heights peaks [12] in
experiments in dense and cold atomic system of ellipsoidal shapes.

The accuracy of the presented numerical calculations is deter-
mined by the number of modes that are incorporated in the trun-
cated system of infinite coupled nonlinear ordinary differential
equations. It is verified by ensuring that the results using a finite
basis of n-eigenfunctions and those from (n + 1)-eigenfunctions
basis are everywhere equal to within an error of less than 1 part
per million.

The present calculations on the spectral line-shape of the emis-
sion from an inverted system complements previous work by the
author on the emission spectral distribution from a slab which
was initially weakly excited and reported on in [13] and that shows
for very thin samples two equal heights principal peaks.

The results of the inverted system exhibit new spectral features
not present, as well, in other works in what is now commonly
called the single photon superradiance regime [14–16]. In these
works, the atomic population time-changing dynamics is not con-
sidered, which is a good approximation only in the linear regime,
i.e. when initially only few atoms are excited.

The main results of this paper are that:

– The continuous model of the Maxwell-Bloch equations may
produce an emission spectral shape with two unequal heights
peaks in a narrow range of the slab thickness.

– The two unequal heights peaks are a result of the competition
between the lowest order even and odd modes which occurs
when the real parts of these modes eigenvalues are approxi-
mately equal.

– The two peaks frequencies are obtained from the dressed eigen-
values of the two normal branches of the nonlinearly interact-
ing bare lowest order even and odd modes.

– The different sign of the frequency shifts in the position of the
single peak observed on either side of the transition region is
attributable to which of the two bare modes is leading. This dif-
ference in sign is due to the opposite signs in the imaginary parts
of the eigenvalues of the lowest orders even and odd modes.

This paper is organized as follows: in Section 2, i write the
Maxwell-Bloch equations in normalized coordinates suitable for
the present problem; in Section 3, i give the results of the numer-
ical computations for the temporal profile and the spectral profile
of the emitted radiation for different slab thicknesses. I show also
that the different observed emission regimes can be a priori iden-
tified through a comparison between the values of the real parts of
the lowest order even and odd modes and a comparison between
these values with the value of the normalized transverse atomic
relaxation width. In the Appendix, the details of some mathemat-
ical expressions not incorporated in the text are given to facilitate
the reading of the text.

2. Maxwell-Bloch equations in normalized coordinates

To facilitate the reading of the manuscript, i include in this
section material which appeared previously but which omission
was reported to be undesirable.

First, i give the standard form of the Maxwell-Bloch equations
when written in normalized variables form, convenient for the pre-
sent problem.

Defining the normalized variables for a slab of thickness 2z0, as:

Z ¼ z=z0; T ¼ Ct; C1 ¼ c1=C; C2 ¼ c2=C; Cfrgn ¼ cfrgn=C;
u0 ¼ k0z0; Xc;0;L ¼ xc;0;L=C;

where k0 ¼ 2p
k0
; k0 is the wavelength corresponding to the transition

frequency, Xc;0;L are respectively the normalized electric field carrier
frequency, the atomic transition frequency, and the Lorentz shift. In
this system of units, all quantities are normalized to the parameter

of interatomic cooperativity C ¼ 4pN}2

�hV , where N is the number of par-
ticles,V is the slab volume, and} is the reduced dipolemoment of the
atomic transition (its normalization is uniquely determined when
given as function of the isolated atom decay rate, see below). The
relaxation decay rates c1; c2; refer respectively to the longitudinal
decay rate, and the resonant transverse decay rates. In the normal-
ized units, the transverse resonant decay rateC2, due to the instanta-
neous dipole-dipole interaction between identical atoms, is equal to
2.33/4 for a J ¼ 0 ! J ¼ 1 transition, and the normalized Lorentz shift

is equal to1/3 [3]. The isolated atomdecay ratec1 ¼ 4
3}

2k30=�h specifies
the longitudinal decay rate of the atomic system.

The Maxwell-Bloch equations in 1-D are given in these units, for
f ¼ Cz0=c � 1, where c is the speed of light in vacuum, by

@v Z; Tð Þ
@T

¼ � i X0 �Xcð Þ þ CT � iXLn Z; Tð Þ½ �v Z; Tð Þ

þ i
2
n Z; Tð Þw Z; Tð Þ; ð1Þ

@n Z; Tð Þ
@T

¼ �i v� Z; Tð Þw Z; Tð Þ � v Z; Tð Þw� Z; Tð Þ½ �
þ C1 1� n Z; Tð Þð Þ; ð2Þ

w Z; Tð Þ ¼ iu0

Z 1

�1
dZ0v Z0; T

� �
exp iu0 Z � Z0�� ��� �

; ð3Þ

where CT ¼ C2 þ C1
2 ;v (complex) and n (real) describe respectively

the atomic polarization density and the degree of excitation of the
two-level atoms (n ¼ 1 if all atoms are in the ground state and
n ¼ �1 if all atoms are excited), and w represents the normalized
Rabi frequency of the complex electric field envelope. It should be
noted that CT is the width of the Lorentzian atomic polarization
for low atomic excitation (linear theory).

The reader should note that in the above equations:

– The dynamical variables are functions of both space and time;
i.e. the discrete index designating the different atoms in the
ensemble has been replaced by a continuous spatial variable.

– The kernel of the integral equation, Eq. (3), is the one-
dimensional form for the Lienard-Wiechert potential, shown
in [3] to represent the effective interaction (one-photon
exchange) between a ground state atom and an excited state
atoms, and that was shown to be responsible for cooperative
phenomena (i.e. superradiance and Cooperative Lamb Shift).

The system described by Eqs. (1)–(3) is solved by expanding
each of the quantities wðZ; TÞ;nðZ; TÞ;vðZ; TÞ in the basis formed
by the eigenfunctions of the integral equation

Ke;o
s /e;o

s Zð Þ ¼ u0

2

Z 1

�1
dZ0 exp iu0 Z � Z0�� ��� �

/e;o
s Z0� � ð4Þ

where Ke;o
s is the eigenvalue of the integral equation, and e and o in

the superscript denote respectively the even and odd families of
solutions and the subscript s specifies the order of the eigenfunction.
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