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a b s t r a c t

We apply the variational method in Hylleraas coordinates to solve the energy eigenvalue problem for
antiprotonic helium molecular systems including �p3He+ and �p4He+. The numerical accuracy on the non-
relativistic energies is shown to reach 10�17, thus the precision of our results is only limited by the width
of the metastable states. Expectation values of the Dirac delta operators for these states are also
calculated.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

The existence of metastable antiprotonic helium (�pHe+) was
verified experimentally at KEK in 1991 [1]. Soon after its discovery,
this Coulomb three-body exotic system �pHe+ has been studied by
laser spectroscopy [2–5] to investigate properties of antiprotonic
helium atoms. Meanwhile, precise data on antiproton can be
extracted by combining experimental and theoretical spectro-
scopic results of �pHe+ that provides a stringent test of CPT invari-
ance in baryon sector [6,7]. In 2006, the accuracy of �pHe+

spectroscopy was measured to (9–16) � 10�9 which yielded a
value of (anti) proton-to-electron mass ratio with a relative uncer-
tainty of 2.7 � 10�9 [8]. In 2011, two-photon transitions of �p3;4He+

were measured to (2.3–5) � 10�9 and the accuracy of the mass
ratio was derived to be 1.3 � 10�9 [9]. These values of the mass
ratio have been adopted in the Committee on Data for Science
and Technology (CODATA) adjustment of fundamental physical
constants in 2006 [10] and 2010 [11].

For light systems, a bound state energy can be expanded in
powers of the fine-structure constant a � 1/137 in the framework
of the nonrelativistic quantum electrodynamics (NRQED) [12,13].
Therefore, the theoretical study of these systems can be carried
out by first solving the time-independent Schrödinger equation.
Then the leading order relativistic and radiative corrections of
R1a2 and R1a3, as well as higher order corrections, can be

calculated perturbatively using the nonrelativistic energy
eigenfunctions, where R1 is the Rydberg constant.

Antiprotonic helium atom is composed of a helium nucleus, an
electron e� in the 1s ground state, and an antiproton �p in a Rydberg
state with principal quantum number n � 38 and angular momen-
tum quantum number l 6 n� 1 [6,7]. Therefore, a state of �pHe+ can
be designated as ðn; lÞ using the quantum numbers of the antipro-
ton. At first glance, �pHe+ is a neutral atom where a helium nucleus
attracts an electron and an antiproton. On the other hand, �pHe+ can
be seen as a diatomic molecule where an electron moves around
massive helium nucleus and the antiproton. This dual nature of
the antiprotonic helium was confirmed theoretically based on a
simple atomic [14] and Born–Oppenheimer adiabatic approxima-
tion [15,16] of the wavefunction. Therefore, a molecular-type vari-
ational expansion was introduced to calculate nonrelativistic
energies [17,18] in late 1990s and a precision of �10�8 a.u. was
achieved. At that time, some other methods were introduced to
calculate nonrelativistic energies of �pHe+ such as variational
method [19] and finite-element method [20].

In 1999 nonrelativistic energies of �pHe+ were calculated by
Korobov, Bakalov, and Monkhorst [21] using a variational
expansion. The radiative dominated states of the antiprotonic
helium were calculated to an accuracy of better than 10�10 a.u.,
while the Auger dominated states were remained to be solved.
Subsequently, an improved variational basis set was developed
by Korobov [22]

expð�ar12 � br23 � cr31Þ; ð1Þ
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where rij ¼ jri � rjj is the distance between two particles and a;b,
and c are nonlinear parameters generated quasirandomly. This type
of basis set was used to study various Coulomb three-body bound
state problems, such as helium, hydrogen molecular ions, positron-
ium ion and antiprotonic helium. The most accurate results, at that
time, for the ground states of these systems were reported in [22].
In combination with the complex coordinate rotation (CCR) method
[23], nonrelativistic energies for the Auger dominated states were
calculated [24] in 2003. Based on the nonrelativistic energies
[21,22,24], it was Korobov who performed systematic calculations
for �pHe+ including relativistic and radiative corrections of orders
R1a2 [24], R1a3 [25], R1a4 [26], and R1a5 [27,28]. While the tran-
sition frequencies are calculated to an accuracy of about 10�10

[27,28], independent calculations are desirable.
In order to provide an independent verification for Korobov’s

calculations mentioned above, the first step is to solve the three-
body Schrödinger equation variationally. The basis set used in the
variational calculation should be simple and efficient. Besides Eq.
(1), there have been a number of high-precision works for three-
body systems using the following correlated Hylleraas basis set

ri1r
j
2r

k
12 expð�ar1 � br2Þ; ð2Þ

where r1 and r2 are the distances of particle 1 and particle 2 relative
to particle 0. This type of basis set was used to calculate s states of
helium atoms [29,30]. It was applied to study nonrelativistic ener-
gies for simple molecular ion Hþ

2 and its isotopes [31] as well. A pre-
cision of 10�30 was achieved for low-L states of Hþ

2 [32] and HD+

[33]. In particular, the validity of this basis set for higher angular
momentum states of hydrogen molecular ions is confirmed [34],
where nonrelativistic energies for states with L = 2–12 were calcu-
lated to an accuracy of 10�17 or better. Moreover, this wavefunction
was extended successfully to study four-body systems such as
lithium and lithium-like ions [35,36].

The purpose of this paper is to demonstrate that the basis set of
Eq. (2) can also be applied to antiprotonic heliummetastable states
with high angular momentum. Consequently, independent calcula-
tions of nonrelativistic energies together with expectation values
of the Dirac delta operators for �p3,4He+ metastable states are car-
ried out in this paper. Atomic units (me = e = �h = 1) are used
throughout.

2. Computational method

The exotic helium atom studied here is a three-body system
that consists of an electron of mass me, a helium nucleus of mass
MHe, and a negatively charged antiproton �p of mass M�p. Fig. 1
shows the geometrical configuration of the system, where r1 and
r2 are, respectively, the position vectors for the electron and the
antiproton, relative to the helium nucleus situated at the origin,
and r12 ¼ r1 � r2. Thus, the Hamiltonian of �pHe+ can be expressed
in the center-of-mass frame

H ¼ � 1
2l1

r2
r1
� 1
2l2

r2
r2
� 1
MHe

rr1 � rr2 �
2
r1

� 2
r2

þ 1
r12

; ð3Þ

l�1
1 ¼ M�1

He þm�1
e ; l�1

2 ¼ M�1
He þM�1

�p : ð4Þ

In order to compare with the previous calculations [26–28], the
masses of the helium nucleus and the antiproton are chosen as
the values adopted in [26–28]

M3He ¼ 5495:885269 me; ð5Þ
M4He ¼ 7294:299536 me; ð6Þ
M�p ¼ 1836:1526726 me: ð7Þ

The energy eigenvalue problem for H is solved variationally
using the following basis function

/ijk ¼ rl1þi
1 rl2þj

2 rk12e
�ar1�br2YLM

l1 l2
ðr̂1; r̂2Þ; ð8Þ

where

YLM
l1 l2

ðr̂1; r̂2Þ ¼
X
m1m2

hl1l2m1m2jLMiYl1m1 ðr̂1ÞYl2m2 ðr̂2Þ ð9Þ

is the vector coupled product of spherical harmonics for the elec-
tron and the antiproton, forming a common eigenstate of L2; Lz,
and P with the corresponding eigenvalues of LðLþ 1Þ;M, and

ð�1Þl1þl2 , respectively.
For a state with total angular momentum L, its wave function

consists of angular momentum components fulfilling l1 þ l2 ¼ L

ðl1; l2Þ ¼ ð0; LÞ; ð1; L� 1Þ; ð2; L� 2Þ; . . . ; ðL;0Þ: ð10Þ
Each configuration ðl1; l2Þ has its own nonlinear parameters a and b.
Since the electron is in the 1s state and the antiproton is in a Ryd-
berg state, the leading angular momentum component ð0; LÞ has a
primary contribution and contributions from the subsequent con-
figurations become smaller. Thus, it is sufficient to consider only
first few angular momentum components. In order to enhance rate
of convergence and numerical stability, the leading angular
momentum component is divided into NL sub-blocks where each
block has its nonlinear parameters ða;bÞ, according to the following
scheme [31]: the nth block in ð0; LÞ contains all the terms satisfying
the following relations for the power jn of r2:

gn < jn 6 gnþ1;n ¼ 1;2; . . . ;NL; ð11Þ
where

gn ¼ int
X
NL

ðn� 1Þ
� �

; ð12Þ

int[x] stands for the integer part of x, and X is an integer controlling
the size of each block. The basis set is generated by including all
terms such that

iþ jþ k 6 X: ð13Þ
The vibrational motion between the helium nucleus and the

antiproton should be sufficiently represented in the basis set as
suggested by Bhatia and Drachman [37]. It was pointed out that
function qNe�bq can be used to simulate the vibrational modes,
where q is the distance between the two nuclei, and N and b are
two big numbers satisfying b � N=2. For the case of hydrogen

Fig. 1. Coordinate scheme for antiprotonic helium.

Table 1
Convergence study of the energy eigenvalue for the �p4He+ state (36,35). Nc is the
number of angular momentum components. In atomic units.

Nc Enr

1 �2.98340755581832400(3)
2 �2.9840208824073930(6)
3 �2.98402095977657130(2)
4 �2.98402095978355102(2)
5 �2.9840209597835537(5)
6 �2.98402095978355327(1)

Korobov [40] �2.9840209597835518

M.-H. Hu et al. / Chemical Physics Letters 654 (2016) 114–118 115



Download English Version:

https://daneshyari.com/en/article/5378820

Download Persian Version:

https://daneshyari.com/article/5378820

Daneshyari.com

https://daneshyari.com/en/article/5378820
https://daneshyari.com/article/5378820
https://daneshyari.com

