
Research paper

A new version of fermion coupled coherent states method: Theory
and applications in simulation of two-electron systems

Mohammadreza Eidi a,b, Mohsen Vafaee a,⇑, Ali Reza Niknamb, Nader Morshedian c

aDepartment of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
b Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran, Iran
cResearch School of Plasma and Nuclear Fusion, NSTRI, P.O. Box 14399-51113, Tehran, Iran

a r t i c l e i n f o

Article history:
Received 9 February 2016
Revised 12 April 2016
In final form 13 April 2016
Available online 16 April 2016

a b s t r a c t

We report a new version of fermion coupled coherent states method (FCCS-II) to simulate two-electron
systems based on a self-symmetrized six-dimensional (6D) coherent states grid. Unlike the older fermion
coupled coherent states method (FCCS-I), FCCS-II does not need any new equations in comparison with
the coupled coherent states method. FCCS-II uses a simpler and more efficient approach for symmetrizing
the spatial wave function in the simulation of fermionic systems. This method, has significantly increased
the speed of computations and give us the capability to simulate the quantum systems with the larger CS
grids. We apply FCCS-II to simulate the Helium atom and the Hydrogen molecule based on grids with a
large numbers of coherent states. FCCS-II with a relatively low number of CS gives a potential energy
curve for H2that is very close to the exact potential curve. Moreover, we have re-derived all the important
equations of the FCCS-I method.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

During the last two decades, the coupled coherent states (CCS)
method has been developed for simulating the quantum dynamics
of high-dimensional systems by solving the time dependent
Schrödinger equation (TDSE) in the phase space based on coherent
states [1–13]. Two of other trajectory-guided approaches are the
variational multi-configurationalGaussian approach (vMCG)
[7,14–16] and the multiple spawning (MS) method [7,16,17].
vMCG uses time-dependent Gaussian functions as the basis set.
Basis sets which obey vMCG equations, do not follow classical tra-
jectories. The equations of vMCG are derived from the variational
principle [7]. Therefore, vMCG potentially have the ability to get
the best possible solution of the Schrödinger equation. Although,
the vMCG equations are complicated and numerically expensive,
but vMCGmethod is able to directly describe quantum events such
as tunneling and passage through a conical intersection and at the
same time the convergence is fast. vMCG method provides a good
description of the dynamics of a molecular system using only a
small basis set and subsequently a small number of parameters
[16]. MS uses a quantum mechanical wavepacket described by a
superposition of Gaussian basis functions that unlike vMCG follows
classical trajectories. Hence, MS would not be a good choice for

simulating two-electron systems. Also, MS have a great ability to
manage the size of the basis set when required [16,18]. As for
MS, the vMCG method has been successfully applied in the context
of non-adiabatic photochemistry and it appears to be a quite
reliable, efficient and cheap approach to deal with non-adiabatic
transitions between coupled electronic states while keeping the
advantage of calculating the potential energy surfaces (PES) and
non-adiabatic couplings on-the-fly [16]. The CCS methodology is
situated between vMCG and MS. The CCS method has many con-
siderable advantages which distinguish it from other trajectory
guided approaches. The main advantage is that fewer configura-
tions are needed for simulating a system with large number of
degrees of freedom. Another advantage is that, the singularity of
the Coulombic potentials can be removed and replaced by an error
function [5,9]. For more information about the main concepts of
the CCS method see Refs. [4,7].

The investigation of non-perturbative laser induced phenomena
in many-electron atoms and molecules, such as non-sequential
double ionization (NSDI) and high-order harmonic generation
(HHG) has formed a growing area of research [19,20]. In multi-
electron atoms, He provides the only conceivable meeting ground
between ab initio theory and experiment in multiple ionization
of atoms by the intense laser fields [19]. Simulation of He exposed
to an intense laser field with the wavelength near 800 nm (most
frequently used in experiments) and comparison of simulation
results with the experiments has not been accomplished yet [19].
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Some ab initio TDSE calculations beyond the one dimensional (1D)
approximation for the interaction of He and H2 with intense
few-cycle near-infrared laser pulses have been reported by Parker
et al. [21] and Ruiz et al. [22], respectively. Belfast group performed
this comparison under a linearly polarized laser field for a shorter
wavelength at 390 nm [21]. However, most computations are
carried out for two-electron systems considering one dimension
for each electron, and with classical [23–26] and quantum [27]
nuclear dynamics. Full dimensional study of two-electron systems
like He and H2 in the presence of an intense laser field is not pos-
sible yet. By developing the CCS method, it is hoped that solving
this major problem become possible.

Originally, the CCS method has been developed to treat the
motion of distinguishable particles. For simulating the dynamics
of fermion particles, a modified version of the CCS method has
been introduced by Kirrander and Shalashilin as fermion coupled
coherent states (FCCS) [11]. We have labeled this Shalashilin’s
approach as FCCS-I throughout this article. The CCS and FCCS-I
methods have tried to develop a useful tool for simulating atomic
and molecular systems in full dimensions and investigating the
dynamics of electrons in systems interacting with intense laser
radiation and related phenomena. Some simulations performed
by CCS and FCCS-I methods can be listed as follows: the 6D
simulation of H2 and its electronic states by the standard CCS
[5,6], simulation of He double ionization [9], the strong-field
ionization of He at long wavelengths [10], electron dynamics in
the laser fields by the FCCS-I method on the base of Frozen
Gaussians [11], high-order harmonic generation by the CCS
approach [13] and other reported applications [28–34]. Another
work done by Zhou and Chu [12] is the full dynamics of H2 in
intense linearly polarized laser fields which in fact used the
Heller’s Frozen Gaussians method instead of the CCS method.

In the simulations reported on the basis of the CCS and the
FCCS-I methods, high energy coherent states are excluded from
the grid. Therefore, the grid is biased to the regions with the lowest
energy [6]. Furthermore, the diffusion Monte-Carlo (DMC) method
on the basis of these two methods has needed a grid refinement
algorithm like the maximizing the residual overlap (MRO) [6].
Moreover, the FCCS-I method uses a symmetrizing equation that
makes equations complex and computations cumbersome. Here,
we introduce a new version of fermion coupled coherent states
method. We have labeled this version of FCCS as FCCS-II through-
out this article. This new version of FCCS method does not need to
use any additional symmetrizing equation, biasing the grid to the
regions with the lowest energy and any grid refinements.

In this article, after giving a brief review on the CCS and the
FCCS-I methods, we introduce FCCS-II method. In Section 2.1,
coherent states and the CCS method have been investigated and
reviewed in a new manner. In Section 2.2, we have studied the
FCCS-I method and proposed FCCS-II method. Moreover, in
Section 2.1, we have employed a new random coherent states grid
generation method which considers two compression parameters
for position and momentum coordinates in the phase space. In
Section 2.3, the diffusion Monte-Carlo and imaginary time propa-
gation methods has been introduced for FCCS-II method. Finally,
we have applied the FCCS-II method to simulate the ground state
of He and the potential well of H2 in Section 3.

2. Theory

2.1. The coupled coherent states method (CCS)

We give a brief review of basics of coherent states and the CCS
method. In this part, some important equations of the CCS method
[4,7]. will be re-derived. Coherent states (CS) are eigenkets of the
annihilation operator â and eigenbras of the creation operator ây as

a Zi � Zj Zj i
hZjay � hZjZ� ð1Þ

where eigenvalue Z have this form

Z ¼ c1=2ffiffiffi
2
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c�1=2ffiffiffi
2
p

�h
p ð2Þ

where q is the position and p is the momentum of the wave
packet with fixed coordinate space width c. We can name this CS
as standard (asymmetric) coherent state (ACS) compared to the
symmetrized coherent states that will be named as SCS in the next
section. Coherent states construct a nonorthogonal overcomplete
basis set as
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For a two-electron system, M, the number of dimensions, is

equal to six. The Hamiltonian operator bH bP; bQ� �
can be expressed

in the terms of the creation and the annihilation operatorsbH â; âyð Þ. The Hamiltonian operator bH â; âyð Þ, can be reordered in

such a way that all creation operators place on the left eH ây; âð Þ.
The matrix elements of the ordered Hamiltonian operatoreH ây; âð Þ can be easily derived by the use of Eq. (1). Then, we have

hZjeH ây; â
� 	jZ0i ¼ hZjZ0ieH Z�; Z0

� 	
: ð4Þ

Identity operator of coherent states has this form

I ¼
XN
k;l¼1

Zkj i X�1
� �

kl
hZlj: ð5Þ

where N is the number of CS. In Eq. (5), X�1 is the inverse of the
overlap matrix X with elements

Xkl tð Þ ¼ hZk tð ÞjZl tð Þi: ð6Þ
In the coordinate representation, these M dimensional coherent

states are Gaussian wave packets with fixed width c [8]
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Wave function of a system with M degrees of freedom can be

represented as a superposition of N trajectory-guided coherent
states

w tð Þj i ¼
XN
k¼1

Dk tð Þexp i
Sk tð Þ
�h

� �
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This is the main idea of the CCS method [4,7,11]. In the Eq. (8),
preexponential factor Dk tð Þ can be derived by

Dk tð Þ ¼
XN
l¼1

Cl tð Þexp i
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�h

� �
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where

Cl tð Þ ¼ hZl tð Þjw tð Þiexp � i
�h
Sl tð Þ

� �
: ð10Þ

In Eqs. (9) and (10), S tð Þ is the classical action

S tð Þ ¼
Z

‘dt: ð11Þ

where ‘ is the diagonal matrix elements of the Lagrangian operator
in the representation of coherent states
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