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a  b  s  t  r  a  c  t

The  current  of  a loaded  particle  along  a two-dimensional  (2D)  tube  with  non-straight  midline  and  is
investigated.  It is  found  that in  the  case  of  a load  with  an  asymmetric  unbiased  external  force,  the  limits
of temperature  and  asymmetric  external  force for  particle  directed  moving  become  smaller  as  the  load
increased.  The  directed  current  is  a peaked  function  of  temperature  and  amplitude  of the  asymmetric
unbiased  external  force.  As  the  channel  width  is  decreased,  the  directed  current  decreases  with  the
increase  of the load.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The problem of particles transport in narrow, tortuous confin-
ing structures has been extensively studied due to its important
in many fundamental processes, i.e., molecules passing through
ion channel proteins, molecular sieves and molecular motors mov-
ing along internal organelles [1,2]. A key point in understanding
the nature of these processes is that the shape of the tube and
the boundary effects play a nontrivial role. Most studies regarded
the geometric constraints and boundary effects as entropic barriers
and reduced the dimensionality of the problem via the Fick–Jacobs
(FJ) approximation [2–5]. Based on an asymptotic expansion in
a small dimensionless parameter that characterizes the channel
width, Bradley [6] proved the validity of the FJ equation to zeroth
order in the small dimensionless parameter and found it can be
taken on the same form for both symmetric and asymmetric chan-
nels. Using the FJ equation, Reguera [7] studied a Brownian particle
moving in asymmetric channel with a biased external force in
presence of entropic barriers. They found that temperature dic-
tates the strength of the entropic potential, and thus an increase
in temperature leads to a reduction of the current. Ai [8–10] inves-
tigated the transport of Brownian particles with entropic barriers
and an unbiased external force. They found that the asymmetry of
the tube shape and the asymmetry of the unbiased forces are the
two ways of inducing a net current, and the phase shift between
the entirely symmetric tube and noise modulation can break the
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symmetry of the generalized potential and induce directed trans-
port. In their later work [11], they studied Brownian particles
transport in deformable tube and found that the competition
between the deformation and the asymmetric driving forces will
induce rich phenomena in transport, i.e., the current can be
enhanced by choosing appropriate noise intensity and deformation.
Recently, from the combination of transient transport mecha-
nisms and asymmetric channel geometry, Alvarez-Ramirez [12]
explained the Brownian particles transport asymmetry and found
that for certain channel configurations, Brownian particles are pref-
erentially transported in one axial direction (e.g., left-to-right) than
in the opposite axial direction.

Most studies about the particle transport and load force induced
by non-equilibrium fluctuations have relied on the energy barrier
[13–16], only few studies [8,17] have considered the load effect
on particles transport in presence of entropic barriers. However, in
the real transport process, the particles transport with a load is also
popular, such as, kinesis and dynein’s move along tubulin filaments,
myosin moves along action filaments [18]. When a Brownian par-
ticle works against a load, the directed current in the presence of
entropic barriers exhibits peculiar behavior. Xie [17] investigated
the transporting velocity of a loaded Brownian motor with entropic
barrier in the presence of an asymmetric unbiased force and found
that in the presence of the entropic barrier, a definite fluctuation
can facilitate the loaded Brownian motor moving. This is important
for designing and controlling these systems.

In this Letter, we focus on the load effects on the directed current
of particle transport in a 2D tube in presence of entropic barri-
ers. We  emphasize on finding the limited scopes of temperature,
amplitudes of the asymmetric external force and degrees of the
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Figure 1. The schematic diagram of the asymmetric unbiased external force. � is
the  period, F0 is the amplitude, and ε is the temporal asymmetric parameter.

tube change for Brownian motor directed moving. It is expected to
provide guidance to design and control the micro fluidic devices
with excellent performances.

2. Model and methods

Consider a Brownian particle with a load f moving in a 2D
periodic tube in the presence of an asymmetric unbiased exter-
nal force (Figure 1), the corresponding stochastic dynamics of the
particle under over-damped condition is described by following 2D
Langevin equations in a dimensionless form [9,17]:

�
dx

dt
= F(t) − f + �x(t), (1)

�
dy

dt
= �y(t). (2)

where �i(t) are the uncorrelated Gaussian white noises with zero
mean and correlation function,

〈
�i(t)�j(t)

〉
= 2�kBTıijı(t − t′) for i,

j = x, y. kB is the Boltzmann constant and T is the absolute temper-
ature, 〈. . .〉 denotes an ensemble average over the distribution of
noise. ı(t) is the Diracdelta function. x, y are the 2D coordinates,
� is the friction coefficient of the particle, and F(t) is a tempo-
rally asymmetric unbiased external force along the x direction and
satisfies:
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where � is the period of the unbiased force, F0 is its magnitude,
ε is the temporally asymmetric parameter with 0 ≤ ε < 1 which is
different from the one in Refs. [9,17] because of a load.

The shape of the tube is described by its wall functions ω−(x)
and ω+(x). The bottom wall ω−(x) and top wall ω+(x) are following,
respectively:

ω−(x) = −
{

a
[

1 − sin
[(

2�x

L

)
+ �

]]
+ b

}
, (4)

and

ω+(x) = a
{

1 − sin
[(

2�x

L

)
+ �

]}
+ b. (5)

Here a represents the parameter that controls the slope of the tube,
L is the periodicity of the tube, ϕ is the relative phase shift between
the bottom and top walls, and b is the narrowing of the boundary
function and the radius at the bottleneck is b − a. The shapes of the
tube are shown in Figure 2 for different values of ϕ.

Due to the complicated boundary conditions of diffusion in
irregular channels, it is very difficult to solve Eqs. (1) and (2). Fol-
lowing Refs. [1–5], by eliminating of the transversal y coordinate
assuming fast equilibration in the transversal channel direction,
and using the concept of effective diffusion coefficient and entropic
barrier, the approximate Fick–Jacobs equation corresponding to
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Figure 2. The schematic diagram of the channel with periodicity 2� for different
values of ϕ. (a) ϕ = 0. (b) ϕ = �/4. (c) ϕ = 3�/4. (d) ϕ = �. The solid lines represent the
top and bottom walls, the dashed line represents the midline of the channel.

Eqs. (1) and (2) is obtained:

∂P(x, t)
∂t

= ∂
∂x

[
D(x)

∂P(x, t)
∂x

+ D(x)
kBT

∂A(x, t)
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]
= −∂j(x, t)

∂x
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(6)

Here D(x) is x-dependent effective diffusion coefficient and when
ω′(x) < 1, it reads

D(x) = D0

1 + y′
0(x)2 + (1/12)h′(x)2

, (7)

D0 = kBT/� , the prime stands for the derivative with respect to the
space variable x. The width h(x) and centerline y0(x) of the tube are
respectively determined by

h(x) = ω+(x) − ω−(x) (9)

and

y0(x) = [ω+(x) + ω−(x)]/2. (10)

In Eq. (6), A(x, t) = E − TS = fx − F(t)x − kBTlnh(x) is the free energy,
and E = fx − F(t)x is the energy, S = kBTlnh(x) is the entropy and h(x)
is the dimensionless width of the tube. j(x, t) is the probability cur-
rent density and P(x, t) is the probability density of the particle at
position x and at time t, and satisfies the normalization condition
and the periodicity condition

∫ L

0
P(x, t)dx = 1, P(x, t) = P(x + L, t),

respectively.
If F(t) changes very slowly with respect to t, which means that

its period is longer than any other time scale of the system. There
exists a quasi-steady state. In this case, the particle current can be
obtained by the method in Ref. [9].
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kBT
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]}
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D−1(y) exp
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kBT

]
dy

} .

(11)

When F(t) − f = 0, from Eq. (11), we can find that j = 0. When a = 0,
the channel is straight and the entropic barriers disappear, from Eq.
(11), we can obtain:

j(F(t)) = 2(F(t) − f )2

1 − exp−2(F(t)−f )L/kBT
. (12)
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