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a b s t r a c t

The present work demonstrates the use of computationally inexpensive neural network (NN) potential
for studying global optimizations and phase transitions in small to medium sized sodium clusters with
DFT accuracy. Accuracy of NN potential has been tested by performing global optimizations in the size
range of 16–40 atoms. We performed Monte Carlo (MC) simulations using NN potential to study the
melting behaviour. Melting study in the size range of 20–40 atoms shows a characteristic premelting
peak and a main melting peak. Our results using NN potentials support the idea of stepwise melting in
small Na clusters (Aguado, 2011).

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Computer simulation techniques such as molecular dynamics
(MD) or Monte Carlo (MC) methods are widely used to obtain tem-
perature dependent and time dependent properties for many
chemical systems. These techniques generally use empirical,
semi-empirical or ab-initio potentials to evaluate the potential
energy at every time step. Ab initio potentials can be used to get
accurate description of any chemical system but are prohibitive
as the system size increases. For example, performing a global opti-
mization on gold clusters with 50 atoms or more using ab initio
potentials become computationally very expensive task because
of exponential growth in local minima with increase in number
of atoms in a cluster. Empirical potentials, on the other hand are
good alternative to ab initio potentials in terms of computational
speed. But the computational speed usually comes at the expense
of considerable loss in accuracy in predicting chemical properties.
This happens because functional form and fitting parameters used
to construct an empirical potential are non-transferable. For exam-
ple, empirical potentials that are adequate for bulk metals cannot
describe structure and dynamical properties of small metal clus-
ters. Therefore, constructing a potential that is good both in accu-
racy and computational efficiency is an active field of research [1–
4].

Herein, we report the construction of NN potential to study the
structure and dynamical properties of small to medium sized

sodium (Na) clusters. We used the high dimensional feed forward
neural networks to fit the DFT energies and gradients of sodium
clusters. The details about how to construct such a neural network
can be found from the recent literature [5–7]. The NN potentials
combine the advantages of the speed of empirical potentials and
the accuracy of ab initio methods. A number of recent papers have
already shown the success of NN potentials in global optimizations
(GO) [8] and molecular dynamics of bulk systems [9–12]. We
tested the NN potential by performing GO on size selected Na clus-
ters and by performing finite temperature calculations.

For Na clusters, a comprehensive GO has been performed to
probe the structures of neutral and anion Nan clusters for n 6 80.
Lowest energy structures obtained from GO were confirmed exper-
imentally using photo electron spectra [13]. It was shown that Na
clusters are based on fused icosahedral (Ih) packing. In case of
small sized Na clusters (n 6 55), theoretical studies on melting
transitions were carried using second moment approximation
(SMA) potential [14,15], distance dependent tight binding (DDTB)
model [14], orbital free (OF) approach [16] and DFT methods
[17–19]. It is well known that melting transition in small clusters
depends on the ground state structure and therefore melting tran-
sition predicted is different for different levels of theory. Irrespec-
tive of the levels of theory melting transition in small clusters has a
characteristic premelting peak along with a main melting peak.
Other dominant factor in this size regime include electronic shell
closing effects on melting point. Detailed investigations on melting
properties based on electronic effects were done using ab initio
molecular dynamic simulations [19]. It is confirmed from these
studies that clusters which are highly symmetrical show a sharp
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melting peak which can be explained due to electronic effects.
Using OF and DFT methods a step wise melting in Na30 [16] and
Naþ41 [17] was demonstrated to explain the mechanisms involved
in melting process as the temperature increased. Apart from theo-
retical studies several experimental studies [20–25] exist on melt-
ing of Na clusters.

Section 2 describes the methodology and fitting procedures, in
Section 3 we discuss GO results and MC simulation results
obtained using our methodology.

2. Methodology and computational details

To train NN, we have to compute DFT energies and gradients on
various Na clusters. All DFT calculations are done using TURBO-
MOLE software [26]. The Perdew, Burke, and Ernzerhof (PBE) func-
tional [27] has been used for treating exchange–correlation of
electrons. To reduce the computational effort we used resolution
of identity (RI) approximation in DFT [28] along with def2-TZVP
orbital basis set [29].

2.1. Initial data generation

To construct NN potential the first step is to generate initial
data. For initial data generation, we made many random initial
structures with clusters, ranging from 3 to 24 atoms, with various
shapes, and bond lengths ranging from 2.5 Å to 4.0 Å. Starting from
these structures we performed MC simulations at T = 300 K to gen-
erate small data set comprising of 10,000 data points using the
SMA potential [30,31]. We then refined the data by removing cor-
relations in structures and dangling bonds. We used the refined
data, of about 3000 clusters, to construct preliminary NN potential.
Once we got a preliminary potential (ERMSE = 20 meV/atom), it was
then used to run MC simulations at different temperatures.
Approximately 30,000 data points with energy span of 0.21 eV
per atom from the lowest energy structure, were used to train
the NN.

2.2. Weight optimization of NN

We employed global extended kalman filter [32–34] for opti-
mizing network weights. In the global extended kalman filter,
the weight update was done at every kth cluster in the training
set. The propagation error ðPEÞ, comprises of error in energy for
kth cluster and sum of all the errors of the force components of
each atom for a kth cluster as given in Eq. (1). The control param-
eters, we and wf will balance the error due to energy and force. The
force error depends on the number of atoms present in the cluster.
During training process, clusters with different number of atoms
are involved and hence the wf parameter varies with number of
atoms in the cluster. After running many tests, we found we ¼ 1
and wf ¼ e0:03N . Where, N is number of atoms per cluster. The
weight penalty term wa is used to avoid sudden changes in the
weights during training process.
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k are energies calculated using DFT and NN potential
respectively for the kth cluster in the data set of Nc structures.
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k;i;a are the ath ¼ ðx; y; zÞ force component on atom i of
kth cluster in the data set of Nc structures and wn is nth weight in
the NN of Nw weights.

2.3. Functional form of NN and preparation of input for NN

The functional form and input vector used in present study is
exactly as described in Ref. [7]. The functional form of NN for each
atom i in the cluster is given in Eq. (5). The total energy (6) of the
cluster is the sum of all atomic energy contributions.
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We prepared the input vector for NN as 9 symmetrized coordinates
from radial symmetric function and 42 symmetrized coordinates
from angular symmetric function for each atom in the cluster. The
cutoff function used is a cosine function with cutoff radius, Rc ¼ 9 Å.
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2.4. Training and testing of NN potential

The total data set was divided into a training set containing 85%
of the data and a testing set containing 15% of remaining data. We
found that the NN architecture of 51-30-30-1 (input layer of 51
nodes – hidden layer one of 30 nodes – hidden layer two of 30
nodes – output layer of 1 node) is adequate for the present work.
The training process was done iteratively by minimizing the error
function. We are validating the trained weights at every iteration
by calculating the average root mean square error (RMSE) of
energy and average RMSE of force for a test set using Eqs. (9)
and (10).
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where Nts is the number of clusters in the test set. We found that the
average RMSE of energy is 9 meV per atom and average RMSE of
force is about 0.14 eV/Å per atom for the test set. Fig. 1 below shows
the energies calculated for various cluster sizes in the test set using
DFT and NN potentials. From the correlation coefficient (R2 ¼ 0:98)
it is evident that NN predicts energies in good agreement with DFT.

3. Results and discussion

3.1. Global optimization of size selected Na clusters using NN potential

For testing the accuracy of our potential, we performed global
optimizations using basin hopping (BH) method [35] and
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