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a b s t r a c t

This Letter assesses the self-consistent field (SCF) convergence behavior in the generalized Hartree–Fock
(GHF) method. Four acceleration algorithms were implemented for efficient SCF convergence in the GHF
method: the damping algorithm, the conventional direct inversion in the iterative subspace (DIIS), the
energy-DIIS (EDIIS), and a combination of DIIS and EDIIS. Four different systems with varying complexity
were used to investigate the SCF convergence using these algorithms, ranging from atomic systems to
metal complexes. The numerical assessments demonstrated the effectiveness of a combination of DIIS
and EDIIS for GHF calculations in comparison with the other discussed algorithms.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

In chemistry and physics, relativistic effects are vital to accu-
rately describe the heavier elements. These effects are classified
into two primary types: spin-free (SF) or scalar relativistic effects,
which are mainly responsible for orbital contraction and expan-
sion; and spin-dependent (SD) effects, which induce energy level
splitting through the coupling of orbital and spin angular
momenta. In quantum chemical calculations, SF effects are
included by perturbative treatments or by using the same ansatz
as a non-relativistic (NR) treatment. SD effects can be considered
by using either the spin–orbit configuration interaction (SOCI)
method or perturbative treatments [1,2]. These schemes for the
SD effects are effective for light elements, whose relativistic effects
are comparatively small, and the SD effects of these systems can be
treated as an additional correction to the NR or SF relativistic cal-
culations. Alternative approaches to include SD effects are the
two- and four-component relativistic methods [3–17]. These treat-
ments give accurate results across the whole periodic table
because the relativistic effects are explicitly considered in the
self-consistent field (SCF) calculations.

In SD calculations, generally, the spin symmetries of the two-
and four-component relativistic wavefunctions are broken because
spin is not a good quantum number. To describe the correct spin
behavior, the generalized Hartree–Fock (GHF) method [18–25],

where any symmetry constraints are removed, can be used instead
of either the restricted HF (RHF) or unrestricted HF (UHF). Because
the additional spin degrees of freedom rotate the spin-quantized
axes independently, GHF is also termed a non-collinear method.

However, it is well-known that the convergence in GHF calcula-
tions is difficult due to the additional spin degrees of freedom. This
sometimes causes the calculations to fall into a higher energy sad-
dle point. One solution for the local minima problem is an exten-
sion of the second-order orbital optimization scheme to GHF,
which has been proposed by Goings et al. [26]. In this study, we
tackle the convergence problem in the GHF calculations from the
viewpoint of the SCF acceleration techniques. Here, we implement
four techniques to GHF, which are typical for NR calculations. The
first method is the use of a damping algorithm, the simplest form
of acceleration algorithm. The second, and most popular, method is
Pulay’s direct inversion in the iterative subspace (DIIS) method
[27,28]. A number of variants of the DIIS algorithm have been
developed, and these also accelerate SCF convergence [29–33].
One DIIS variant, the energy-DIIS (EDIIS) developed by Kudin
et al. [29], is also assessed in this study. The fourth scheme
assessed here is a combination algorithm comprising the DIIS
and EDIIS algorithms, and termed EDIIS + DIIS. This algorithm
was assessed by Garza and Scuseria [34], and Sulzer et al. [33],
and they concluded that this combination algorithm is the best
choice for NR molecular calculations.

This Letter is organized as follows: Section 2 presents, briefly,
theoretical aspects used in this study. Then, the numerical assess-
ments are shown and discussed in Section 3, and the concluding
remarks are given in Section 4.
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2. Theoretical aspects

This section provides brief explanations of GHF theory and the
SCF acceleration algorithms in the GHF framework. In the GHF
method, molecular spinors (MSs), which are eigenfunctions of
the Fock matrix, are defined by the superposition of atomic orbitals
(AOs) for alpha- and beta-spins, i.e.,

ui ¼
Xfa;bg
r

X
l
Crlivrlr; ð1Þ

where u denotes the MSs, v denotes the AOs, C denotes the spinor
coefficients, and r denotes the spin functions. In the two-
component framework, the Roothaan–Hall (RH) equation is
expressed in block form,
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where F is the Fock matrix, S is the overlap matrix, and e is the spi-
nor energy. The density matrix in GHF also has the block form,
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where n denotes the occupation numbers.
Here, we use five techniques to solve the RH equation. The first

is the fixed-point (FP) algorithm, which uses no acceleration tech-
niques. The second is the static damping algorithm, whose equa-
tion is written as

Dnew ¼ jDi�1 þ ð1� jÞDi; ð4Þ
where Di denotes the density matrix in the ith iteration and j is the
weighting factor. In the NR calculations, the damping algorithm is
stable, but its rate of convergence is slow.

The other techniques we have used are related to the DIIS algo-
rithm. In these algorithms, a new density matrix is estimated by
the linear combination of the density matrices from the previous
SCF iterations,

D ¼
Xn
i¼1

ciDi; ð5Þ

where n is the number of the dimension of the DIIS subspace. This
treatment is also available for the Fock matrix instead of the density
matrix because of the linear relationship between the density and
Fock matrices. The third techniques used here is the conventional
DIIS method, which optimizes the coefficients fcig by minimizing
the so-called DIIS error vector e. The error vector is commonly given
by e ¼ ½F;D� ¼ FD� DF in an orthonormal basis. This is because
½F;D� ¼ 0 is the necessary condition for a converged SCF. The opti-
mal DIIS coefficients are mathematically given by

fcig ¼ arg inf
Xn
j¼1
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Here, the working equation to obtain the coefficients is written as
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where

Bij ¼ eih jej
�
; ð8Þ

ci ¼ c1; c2; . . . ; cnð Þt; ð9Þ
1 ¼ 1; 1; . . . ; 1ð Þt : ð10Þ
Here, k is a Lagrange multiplier. Eq. (7) is a linear equation and is
solved by matrix inversion. In the NR calculations, DIIS performance

is known to depend on the initial guess, although the rate of conver-
gence is fast. In the RHF/UHF calculations for the relativistic Hamil-
tonian including only SF terms, denoted as SF-RHF/UHF, Eq. (7) can
be straightforwardly applied. On the other hand, in the GHF calcu-
lations for the relativistic Hamiltonian involving not only SF terms
but also SD ones, denoted as SD-GHF, the Fock and density matrices
become complex and have dimensions twice the size of those of NR
and SF relativistic calculations. Thus, Eq. (7) is solved in complex
space.

The fourth technique is the EDIIS method. The coefficients for
the linear combination of the previously iterated density matrices
is given by

fcig ¼ arg inf EHF
Xn
i¼1
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; ð11Þ

where EHF is the HF energy functional, which is defined as,
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This means that the EDIIS coefficients are chosen to minimize the
HF energy functional. The minimization problem under the restric-
tion of ci 2 ½0;1� is solved by constrained optimization methods
such as the reduced gradient algorithm [35]. EDIIS is known to work
efficiently even if the SCF calculation starts from poor initial guess
orbitals. However, the rate of convergence is slower near the mini-
mum than that of DIIS. The imaginary part of the second term of Eq.
(12) is normally approximated to be zero even in complex SD-GHF
calculations. Thus, for minimization, we have used real coefficients.

The final and fifth technique is a combination algorithm com-
prising DIIS and EDIIS, known as EDIIS + DIIS. As described before,
EDIIS is efficient even when starting with a poor initial guess and
DIIS is efficient near the minimum. Thus, a combination algorithm
is more efficient than either of the algorithms separately. Here, we
use a similar EDIIS + DIIS algorithm to that used in a previous study
of NR calculations [34]. In the early steps, EDIIS is used alone, until
the largest absolute element of the DIIS error vector is less than
10�1 a.u. In the region where the largest absolute element is
between 10�1 and 10�4 a.u., the coefficients for the linear combina-
tion of the density matrices can be given by

c ¼ 10max enp
n o

cEDIIS þ 1� 10max enp
n o� �

cDIIS; ð13Þ

where cEDIIS and cDIIS are the EDIIS and DIIS coefficients, respectively.

Here, max enp
n o

denotes the largest element of the DIIS error vector

in the present (nth) iteration. Finally, in the region where max enp
n o

is less than 10�4 a.u., DIIS is used alone until SCF convergence is
achieved.

3. Computational details

This section describes the computational details used to assess
the acceleration techniques in GHF. We implemented the three
DIIS-related algorithms (DIIS, EDIIS, and EDIIS + DIIS) in our in-
house program. For comparison, the simple FP and damping algo-
rithms were also used. In the damping algorithm, the weighting
factor for the previous density matrix was fixed to j ¼ 0:25. The
maximum number of the dimension of the DIIS and EDIIS sub-
spaces, i.e., the number of the density and Fock matrices involved
in the linear combination, was fixed to 20. The efficiencies of the
five algorithms were numerically assessed through SD-GHF level
calculations. For comparison of the SCF convergence behavior,
SF-RHF/UHF calculations, generally giving better convergence
behavior than SD-GHF, were also performed. It should be noted
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