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a  b  s  t  r  a  c  t

We  study  charge-transfer  dynamics  monitored  by  two-dimensional  (2D) optical  spectroscopy.  The often
used  model  consisting  of two  coupled  diabatic  electronic  states  in  a single  reaction  coordinate  is  used
to  demonstrate  the  relation  between  the vibronic  dynamics  and  the  2D-spectra.  Within  the  employed
wave-function  approach,  dissipation  is included  via  a  quantum-jump  algorithm  with  explicit  treatment  of
dephasing.  States  with  long  lifetimes  which  decay  slowly  due  to the  interaction  with the  environment  are
identified.  Using  filtered  Fourier  transforms,  energy  and  time  resolved  information  about  the dissipative
system  dynamics  can  be  obtained.
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1. Introduction

Two-dimensional (2D) optical spectroscopy has evolved into a
main experimental tool to investigate the quantum dynamics in
molecules and molecular aggregates. After the basic technologies
were developed [1–5], recent years have seen many applications
[6–15]. The theory of multidimensional coherent spectroscopy was
put forward by Mukamel and others [16–18] employing density-
matrix theory to calculate non-linear response functions which,
for simple models, can be calculated analytically [16]. Within this
approach, it is possible to illustrate different pathways contribut-
ing to the signals using double-sided Feynman diagrams [16,19].
The latter derive from time-dependent perturbation theory which
can be implemented numerically to calculate 2D-spectra. An alter-
native method to determine time-dependent polarizations which
does not rely on perturbation theory was devised by Seidner et al.
[20] for pump–probe spectroscopy. The idea is to tack particular
phases to the different pulses which then allows for the extraction
of the direction-dependent polarization. This approach can also be
applied to four-wave-mixing spectroscopy [21,22]. More recently,
the Domcke group developed another efficient method for the cal-
culation of four-wave-mixing signals, first for density matrices [23]
and then also for wave-functions [24].

If no line-broadening mechanism is present as is real-
ized in a a sample of non-interacting molecules in the gas
phase, high-resolution 2D-spectra exhibit peaks at energies
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corresponding to differences between the eigenenergies of the
interrogated system [17,25,26]. For a molecule possessing vibra-
tional degrees of freedom, the participating eigenstates are, within
the Born–Oppenheimer approximation [27], vibrational states
belonging to different electronic states. For a larger density of
vibronic states and an effective coupling to a surrounding, single
peaks can no longer be resolved in the spectra. It is then not pos-
sible to adopt a direct wave function approach and traditionally a
description in terms of reduced density-matrices is applied. How-
ever, stochastic Schrödinger equations can be set up which are,
within certain approximations, equivalent to the density-matrix
description. One such method employs quantum-diffusion theory
[28] which has recently been applied to the ultrashort spectroscopy
of molecules [29–33]. Another stochastic wave function scheme
is the quantum-jump method [34], for molecular applications of
this scheme see, e.g., Refs. [35,36]. This methodology, within the
extension suggested by Makarov and Metiu [37], has been applied
to 2D-spectroscopy recently [38]. The latter work treated a model
of two shifted and only field-coupled harmonic oscillators. In the
present work we use this approach to apply it to a more complex
situation, i.e. a generic charge-transfer (CT) process involving non-
adiabatic transitions. As has been discussed by Saalfrank [36], there
are situations where the stochastic approach is computationally
more effective than a reduced density-matrix calculation.

To describe charge transfer one often regards two diabatic states
which are coupled by a constant potential matrix element [39,40].
In fact, this is the basis idea of Marcus-theory [41]. Depending on
the coupling strength, situations arise which are described by the
motion on diabatic (weak diabatic coupling) or adiabatic (strong
diabatic coupling) potentials. Here we treat the case where the
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coupling constant is rather large. It is shown that this gives rise
to particular interesting states of the isolated system which, if cou-
pled to the bath, have very long lifetimes. The signatures of these
states in the 2D-spectra is explored and, in particular, we focus on
the decay behavior as extracted from the spectra. In Section 2 we
introduce the model and give a brief outline of how the stochastic
propagation scheme is used to calculate the 2D-spectra. The numer-
ical results are presented in Section 3, and the article is finished with
a summary (Section 4).

2. Theory and model

The most simple model for a charge-transfer process is that of
two coupled diabatic electronic states |1〉  and |2〉, with harmonic
oscillator potentials depending on a dimensionless reaction coor-
dinate q with the Hamiltonian:

Ĥd =
2∑
n=1

(|n〉Hn(q)〈n|) + |1〉J〈2| + |2〉J〈1|, (1)

with

Hn = − 1
2m∗

d2

dq2
+ Vdn (q) = − 1

2m∗
d2

dq2
+ �(q − qn)2. (2)

In our calculation we use a coupling of J = 0.237 eV and the effec-
tive mass m* = 1005 eV−1 which is motivated by former studies
on mixed valence compounds [42,43]. The equilibrium distances
are fixed to values of q1 =−0.5 and q2 = 0.5, and the reorganization
energy is � = 0.917 eV. This gives rise to the diabatic potentials Vdn (q)
shown in Figure 2 (left hand panels). The figure also contains the
‘adiabatic’ potential curves (right hand panels) obtained by diag-
onalization of the potential matrix. To obtain the two-component
eigenstates (with eigenstates E˛) | ˛〉 =  1,˛(q)|1〉 +  2,˛(q)|2〉, we
employ basis sets consisting of (harmonic) eigenfunctions ϕn,m(q)
of the Hamiltonians Hn(q):

 n,˛(q) =
∑
m

cn,m,˛ ϕn,m(q), (3)

where, due to symmetry, c1,m,˛ =± c2,m,˛. The coefficients are
obtained by diagonalization of the Hamiltonian represented in the
harmonic set of basis functions. For the purpose of illustration, we
also calculate the components of the ‘adiabatic’ functions  ±,˛(q)
with the help of the matrix which diagonalizes the diabatic poten-
tial matrix. Note, however, that the single components do not
diagonalize the Hamiltonian (as is the case for a two-level system
[40]) because the coordinate-dependence of the transformation
matrix results in kinetic coupling elements.

For the time-propagation of a system with Hamiltonian H which
is coupled to a bath [37] the state vector | (t)〉 at time t is expanded
in the set of eigenstates | ˛〉 of H:

| (t)〉 =
∑
˛

c˛(t)| ˛〉. (4)

The propagation for a small time-step dt involves one of the follow-
ing three possibilities: For a dephasing-process one has

| n(t + dt)〉  =
∑
˛

c˛(t)e−iı˛(t) | ˛〉. (5)

Here, the coefficients are multiplied by phase factors with randomly
chosen phases ı˛(t) sampled from the interval [0, 2�]. The next
possibility is that a quantum jump | ˛〉 → | ˛′ 〉 takes place leading
to:

| (t + dt)〉  = c˛(t)
|c˛(t)| | ˛′ 〉. (6)

Finally, for a coherent propagation one has:

| (t + dt)〉 = 1√
C

∑
˛

c˛(t)e−iE˛dte−(�˛+�)dt/2| ˛〉, (7)

where the normalization constant C is determined numerically
such that the state vector is normalized to one, and the rates �˛
and � are defined below.

Which of the different propagation steps is taken is determined
by the associated probabilities. For the dephasing probability we
use:

pd = � dt, (8)

where the dephasing rate � is taken as an adjustable parameter.
The jump probability is

p˛˛′ (t) = k˛˛′ |c˛(t)|2 dt, (9)

with the rate k˛˛′ defined as [44,45]:

k˛˛′ = 2|〈 ˛|q| ˛′ 〉|2 J(ω˛˛′ ), (10)

where we  restrict the calculations to the case of zero temperature so
that only down-jumps are allowed. The spectral densities J(ω˛˛′ )
which depend on the energy differences ω˛,˛′ = (E˛ − E ′̨ ) are of
Ohmic form with an exponential cutoff:

J(ω˛˛′ ) = � ω˛˛′ e−ω˛˛′/ωc , (11)

where the cutoff frequency is set to ωc = 1.0 eV. The parameter �
determines the strength of the system/bath coupling. Calculating
the jump probability

pj(t) =
∑
˛

∑
˛′ /=  ˛

p˛˛′ (t), (12)

leads to the probability for a coherent propagation as
pc(t) = 1 − pd − pj(t). Finally, the coherent propagation (Eq. (7))
contains the ‘escape rates’:

�˛ =
∑

 ̨ /=  ˛′
k˛˛′ . (13)

For the numerical propagation, the possible events are arranged on
the unit interval [0, 1], which is then partitioned into the intervals
pd, {p˛,˛′ (t)}, pc(t). At each time step a uniformly distributed ran-
dom number on the unit interval is chosen and, falling into one of
the segments, the corresponding event is carried out. Note, that the
time step dt has to be sufficiently small in order to obtain reasonable
(i.e. small) probabilities. The procedure leads to the states | l(ti)〉,
where l denotes the run and ti the discrete sampling times. Perform-
ing Nr independent runs, the expectation value of an observable Â
is:

〈Â〉(ti) = 1
Nr

Nr∑
l=1

〈 l(ti)|Â| l(ti)〉. (14)

We note that the time-propagation via this algorithm is equal to
propagating the reduced density matrix via the Redfield equa-
tions within the secular approximation [37,44]. Extensions of
the stochastic method which go beyond the secular and Markov
approximations are out of the scope of the present work.

To characterize the spectral properties of the investigated sys-
tem we regard the first order polarization which, within the
stochastic approach is calculated as [38]:

P(1)(t) = 1
Nr

Nr∑
l=1

1∑
m=0

〈 (m)
l

(t)| 	̂| (1−m)
l

(t)〉. (15)

The state | (1)
l

(t)〉 results from an interaction with an external
electric field in first-order time-dependent perturbation theory,
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