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a  b  s  t  r  a  c  t

Pulay’s  Direct  Inversion  in  the  Iterative  Subspace  (DIIS)  method  is  one  of  the  most  widely  used  mixing
schemes  for accelerating  the  self-consistent  solution  of  electronic  structure  problems.  In this  work,  we
propose  a  simple  generalization  of DIIS  in which  Pulay  extrapolation  is  performed  at  periodic  intervals
rather  than  on every  self-consistent  field  iteration,  and  linear  mixing  is  performed  on  all  other  iterations.
We  demonstrate  through  numerical  tests  on  a wide  variety  of  materials  systems  in  the  framework  of
density  functional  theory  that  the  proposed  generalization  of  Pulay’s  method  significantly  improves  its
robustness  and  efficiency.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Nonlinear equations are often posed as fixed point problems
that lend themselves to solution via self-consistent iterations [1,2].
This is the commonly adopted practice in electronic structure cal-
culations such as those based on density functional theory (DFT)
[3,4], where additionally so-called mixing schemes are routinely
employed to accelerate convergence [5,6]. The simplest of all mix-
ing schemes is linear mixing,  which is an under-relaxed fixed-point
iteration. Although linear mixing can be guaranteed to converge
for many systems with the choice of small enough mixing param-
eter [7], it tends to perform rather poorly in practice. Since the
computational cost of electronic structure calculations is directly
proportional to the number of self-consistent field (SCF) iterations
required, considerable effort has been devoted to the formulation
of more effective mixing schemes over the years, see, e.g., [5,6] and
references therein.

Perhaps the most widely used mixing scheme is Pulay’s Direct
Inversion in the Iterative Subspace (DIIS) [8,9], based on Ander-
son’s extrapolation [10]. Pulay’s technique represents a specific
variant of Broyden’s quasi-Newton approach [11–13] and falls
into the broad category of multisecant methods [14]. Although

∗ Corresponding author.
E-mail addresses: baner041@umn.edu (A.S. Banerjee),

phanish.suryanarayana@ce.gatech.edu (P. Suryanarayana), pask1@llnl.gov
(J.E. Pask).

the relative simplicity and overall performance of DIIS [15]
make it an attractive choice, it has been observed that Pulay
mixing can stagnate and/or otherwise perform poorly in calcula-
tions involving certain metallic and/or inhomogeneous systems
[7,16]. This has motivated the development of a number of
alternative approaches, including variants of Broyden’s method
[13,17–19], the Relaxed Constrained Algorithm (RCA) [20,21],
and a variety of preconditioning techniques [7,22–25]. How-
ever, while the improvements demonstrated have been in some
cases substantial, increased complexity, additional parameters,
and/or lack of transferability have hindered adoption in prac-
tice.

In this work, we introduce a simple generalization of the
DIIS method for accelerating self-consistent field iterations, which
we refer to as the Periodic Pulay method. The approach can be
understood as the application of the recently developed Alternat-
ing Anderson-Jacobi (AAJ) technique [26]—an efficient solver for
large-scale linear systems in the framework of the classical Jacobi
fixed-point iteration—to SCF iterations in electronic structure cal-
culations. Contrary to the conventional wisdom that DIIS generally
far outperforms linear mixing, the central idea of the Periodic Pulay
method is to employ Pulay extrapolation only once every few SCF
iterations, and use linear mixing on all other iterations. We  find
that this simple generalization not only improves the efficiency of
DIIS, but also makes it more robust. In addition, since the majority
of electronic structure codes in current use (e.g., [27–31]) already
employ Pulay mixing, the proposed technique can be easily incor-
porated.
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The remainder of this Letter is organized as follows. In Section 2,
we present the Periodic Pulay method. In Section 3, we examine its
performance for a wide range of materials systems in the context
of DFT. Finally, we provide concluding remarks in Section 4.

2. Periodic Pulay method

The self-consistent field (SCF) method casts the equations for
the electronic ground-state as the fixed-point problem

� = g(�) , (1)

where � ∈ R
N×1 is the electron density, and the nonlinear mapping

g : R
N×1 → R

N×1 is composed of the effective potential evaluation
for a given electron density and electron density evaluation for the
associated Hamiltonian. The convergence properties of the SCF iter-
ation in the vicinity of the solution are determined by the properties
of the Jacobian of the residual function f(�) = g(�) − � [7]. Therefore,
a strategy that leads to improved conditioning/solvability of the lin-
ear system associated with the Jacobian may  also lead to improved
convergence of the SCF iteration [32]. In this context, the effective-
ness of the GMRES approach [33] in solving linear systems is closely
related to the success of the DIIS method in accelerating SCF iter-
ations [14,34,35]. Similarly, well established ideas for accelerating
the solution of linear systems through preconditioning have found
their counterparts in electronic structure calculations [7,22,23,25].

In recent work [26], a new solver for large-scale linear systems
of equations has been developed in which Anderson extrapola-
tion is performed at periodic intervals within the classical Jacobi
fixed-point iteration. On one hand, under-relaxed Jacobi iterations
are well known to rapidly damp higher-frequency components
of the residual [36]. On the other hand, periodic application of
Anderson extrapolation has the effect of damping lower-frequency
components. Therefore, the simultaneous application of these two
methods stands to efficiently reduce the overall norm of the
residual, thus leading to the success of the so called Alternating
Anderson-Jacobi (AAJ) method [26]. In particular, AAJ has been
found to significantly outperform both GMRES and Anderson-
accelerated Jacobi methods. This provides the motivation for the
Periodic Pulay mixing scheme proposed here, which can be viewed
as the extension of the AAJ method to SCF fixed-point iterations in
electronic structure calculations.

In the Periodic Pulay method, Eq. (1) is solved using the following
fixed-point iteration:

�i+1 = �i + Cifi , (2)

where the subscript i denotes the iteration number, fi = f(�i), and
the matrix

Ci =
{

˛I if (i + 1)/k /∈ N, (Linear mixing)

˛I − (Ri + ˛Fi)(F
T
i Fi)

−1
FT

i if (i + 1)/k ∈ N. (Pulay mixing)
(3)

In the above expression, Ri and Fi denote the iterate and residual
histories:

Ri = [��i−n+1, ��i−n+2, . . .,  ��i] ∈ R
N×n, (4)

Fi = [�fi−n+1, �fi−n+2, . . .,  �fi] ∈ R
N×n, (5)

where ��i = �i − �i−1 and �fi = fi − fi−1. In addition,  ̨ is the mixing
parameter, n is the size of the mixing history, and k is the frequency
of Pulay extrapolation. We  outline the aforedescribed approach in
Algorithm 1, wherein tol specifies the residual convergence crite-
rion.

Algorithm 1. Periodic Pulay method.

The Periodic Pulay method can be considered as a generalization
of both the classical Pulay and linear mixing schemes. Specifically,
the classical Pulay scheme is recovered for frequency of extrapo-
lation k = 1, while the linear mixing scheme is recovered as k→ ∞.
In principle, the parameter k is arbitrary and independent of the
mixing history size n. However, it is worthwhile to narrow the
parameter space for k, particularly from the perspective of prac-
tical calculations. For this purpose, we note that larger values of k
typically lead to more stable but slowly converging SCF iterations
(a consequence of increased linear mixing), while smaller values of
k tend to provide less damping of higher-frequency error compo-
nents and correspondingly slower overall convergence as well. In
practice, a balance between these limits is preferable and we  have
found that it is usually counterproductive to set k > n/2 when n is
even, and k > (n + 1)/2 when n is odd; and similarly counterproduc-
tive to set k < 2.

The effectiveness of alternating Pulay and linear-mixing iter-
ations has been recognized before. In particular, the Guaranteed
Reduction Pulay (GR-Pulay) scheme [30,37] alternates classical
Pulay and linear mixing in successive SCF iterations with mixing
parameter  ̨ = 1. As such, GR-Pulay can be understood as a special
case of Periodic Pulay with  ̨ = 1 and k = 2. However, in more difficult
cases, e.g., highly inhomogeneous and/or metallic systems at low
temperature, fixing  ̨ = 1 can degrade performance or lead to SCF
divergence. The flexibility of reducing  ̨ in such cases is thus impor-
tant to retain. The flexibility to vary k as well—within prescribed
limits—can also be advantageous, as we show below.

While the mixing parameters in the Pulay and linear extrapo-
lations are in general distinct, we use the same mixing parameter
for both in the present work. Indeed, the approach can be further
generalized by employing different values for the two parameters.
However, we have found that such a strategy does not yield signif-
icant gains in practice, and therefore refrain from introducing this
additional parameter here. Also, it is worth noting that the Peri-
odic Pulay method does not rely on any heuristics based on the
variation of the total energy or residual during the SCF iteration.
Yet, as demonstrated in the next section, we  find the method to
be both robust and efficient for the full range of systems consid-
ered, even when classical Pulay fails to converge. Finally, though
we have described the Periodic Pulay scheme in terms of density
mixing, it is identically applicable to potential mixing, the expres-
sions for which can be obtained by replacing the electron density
appearing in Eqs. (1)–(5) with the relevant potential.

3. Results and discussion

In this section, we  verify the robustness and efficiency of the
Periodic Pulay method for accelerating the self-consistent field
iteration in density functional theory calculations. For this pur-
pose, we implement the Periodic Pulay scheme in the SIESTA code
[31,38], wherein mixing is performed on the density matrix. To
demonstrate the effectiveness of the method across diversephysical
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