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An  improvement  of  the  screening-corrected  Additivity  Rule  (SCAR)  is proposed  for  calculating  electron
and  positron  scattering  cross  sections  from  polyatomic  molecules  within  the  independent  atom  model
(IAM),  following  the analysis  of  numerical  solutions  to the  three-dimensional  Lippmann–Schwinger
equation for  multicenter  potentials.  Interference  contributions  affect  all the  considered  energy  range
(1–300  eV);  the  lower  energies  where  the  atomic  screening  is most  effective  and  higher  energies,  where
interatomic  distances  are  large  compared  to total  cross  sections  and  electron  wavelengths.  This  correc-
tion  to the interference  terms  provides  a significant  improvement  for both  total  and  differential  elastic
cross  sections  at these  energies.
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1. Introduction

Electron and positron (e−/e+) scattering processes from atoms
and molecules have been a subject of interest during the last few
decades. Recently this interest has considerably increased due to
the relevance of these processes in radiation interaction models
for biomedical applications [1]. Scattering experiments are com-
plicated in general and difficulties determining absolute values as
well as uncertainties connected with energy and angular resolution
limitations require some complementary data from theory. In this
context sufficiently accurate general calculation procedures, for a
wide variety of targets, over a broad energy range, are extremely
useful.

The lack of spherical symmetry makes ab initio calculations
for electron and positron scattering cross sections by molecules
almost unfeasible at intermediate and high energies, and there-
fore available theoretical methods rely on different approximate
treatments. One of these techniques, the Independent Atom Model
(IAM) [2–8], is particularly successful. The IAM treatment assumes
that the molecules can be approximately substituted by their
constituent atoms in their corresponding positions, which indepen-
dently scatter incident electrons or positrons. One of the greatest
advantages of this approach is the possibility of obtaining reliable
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results for a large number of molecular species from the data of a
reduced number of atoms. With this method, total elastic, inelastic
and differential elastic cross sections can be easily obtained with
reasonable accuracy within its energy range of applicability, typi-
cally above 100 eV.

An important limitation of the IAM treatment is that it ignores
any multiple scattering of the projectile within the molecule, hence
it’s application only for relatively high incident energies (>100 eV).
Some years ago, we  proposed an approximated method to partially
account for these effects, the screening corrected additivity rule
(SCAR) [9,10], which extended the applicability of the IAM method
down to lower energies, typically 20–30 eV.

In a recent letter [11] the IAM treatment for elastic scattering
has been revisited, indicating the relevance of interference con-
tributions arising from all the scattering centres in the molecule.
These contributions were particularly important at small scatter-
ing angles, where experimental systems are unable to distinguish
them. Nevertheless they contribute significantly to the integrated
cross sections, and therefore it is crucial to use interference cor-
rected values for Monte Carlo simulations [12] and for experimental
data normalisation procedures [13]. However, as the AR procedure
fails for energies below 100 eV by noticeably overestimating the
cross section for decreasing energies, the effect of the interference
terms in this range is not appreciable. In these conditions the SCAR
procedure constitutes an excellent tool to evaluate the magnitude
and consequences of interference terms at intermediate energies,
below 100 eV.
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The main objective of this study is to revise the SCAR pro-
cedure in order to include these interference contributions. For
this purpose, considering only elastic scattering for representa-
tive molecular targets will be enough, and therefore, following the
scheme of our previous letter [1], we will solve a three-dimensional
Lippmann–Schwinger equation for some multicentre potentials.
Although we have compared these results for different molecu-
lar configurations based on C and H atoms for different interatomic
distances, we will present here only data for the H2 and CH4 at their
equilibrium geometries as they suffice to illustrate all the relevant
results.

2. Review of interference and screening corrections

Assuming the IAM approximation, the molecular cross sections
can be derived from the well known approximate expression [2]
for multicenter dispersion

F(�) ≈
∑
atoms

fi(�)eiq·ri (1)

where q = kf − ki is the momentum transfer, ri are the atomic
positions and fi(�) are the atomic scattering amplitudes. As this
corresponds to the independent scattering from each atom, the
approximation is expected to be valid only for large interatomic
distances compared to the wavelength associated to the incident
projectile.

From the above molecular dispersion function, the differential
elastic cross section is easily obtained by averaging its modulus
squared |F(�)|2 over all the molecule orientations’ [2,6], obtaining:

d�elastic
molecule

d˝
=

∑
i,j

fi
(

�
)

f ∗
j

(
�
) sin  qrij

qrij
=

∑
i

∣∣fi
(

�
)∣∣2

+
∑
i  /= j

fi
(

�
)

f ∗
j

(
�
) sin  qrij

qrij
=

∑
i

d�elastic
atom  i

d˝
+ d�interference

d˝
(2)

where q ≡ |q| = 2k sin �⁄2, rij is the distance between i and j atoms,
sin qrij/qrij = 1 when qrij = 0, and d�interference/d  ̋ represents the
˙i /=  j interference contribution to the molecular differential cross
section.

Hereafter, we will consider only elastic processes, which are
enough for our purposes, and hence a real scattering potential for
each atom (no imaginary inelastic part) will be used to obtain the
atomic scattering amplitudes fi(�). In these conditions the total
cross section will be coincident with the corresponding integral
elastic cross section.

By integrating Eq. (2) the total molecular cross section can be
written as:

�total
molecule =

∑
atoms

�total
atom i + �interference (3)

where �interference represents the integration of the above dif-
ferential interference contribution. It must be noted that this
contribution would not be present in (3) if this expression were
directly obtained from (1) by applying the optical theorem. This lat-
est procedure is known as the ‘Additivity Rule’ (AR) and is widely
described in literature [5–7,9,14–23]. As discussed in [11], the
appropriate expression is Eq. (3), and the discrepancy relies on
the approximate nature of Eq. (1) which doesn’t fulfil the opti-
cal theorem. It has also been shown that interference terms are
only relevant at small angles and their integrated contribution
(�interference) is non negligible even at high energies [11].

At intermediate energies (10–100 eV), where atomic cross-
sections are not small compared to interatomic distances in the

molecule, the IAM approximation fails since the atoms can no
longer be considered as independent scattering centres and multi-
ple scattering within the molecule is not negligible. Approximate
methods revealed that important corrections are needed by the IAM
method for these energies [8,9,19,21,24,25] and it has been shown
[9] that the energy range for which these corrections are relevant
depends on the size of the molecule: around 10% for N2 and CO up
to 200 eV, for CO2 up to 300 eV, and for benzene up to 600 eV.

Representative molecular cross-section calculations are based
on a corrected form of the IAM treatment known as the SCAR
(Screening Corrected Additivity Rule) procedure, which approxi-
mately accounts for these multiple scattering effects. All the details
for this procedure have been extensively described elsewhere
[9,10,26] and therefore they are only briefly mentioned here.

Basically, within the SCAR procedure the integral molecular
cross sections (both elastic and inelastic), ignoring interference
contributions, are expressed as:

�total
molecule =

∑
atoms

si�
total
atom i (4)

where the si screening coefficients reduce the contribution of each
atom to the total molecular cross section (0  ≤ si ≤ 1). The calcula-
tion of these coefficients requires some simple closed expressions
[9,26] based only on data about position and the total cross section
�total

atom i
of each atom in the molecule. This procedure is applicable

to any arbitrary molecular geometry and size [27]. Note that only
elastic processes are considered in this study and therefore the total
cross section and the integral elastic cross section are coincident.

As far as the differential elastic cross sections are concerned,
the SCAR procedure distinguishes two  contributions, one from the
direct scattering cross section (�D) which is related to the angular
distribution given by the single scattering differential cross section,
and the re-dispersed cross section (�elastic

molecule − �D) which corre-
sponds to an assumed isotropic angular distribution. The latter
contribution approximately accounts for re-dispersion processes
inside the molecule. After estimating their relative weight by means
of the si screening coefficients and the aforementioned angular
distributions of the atomic elastic cross sections[9] the resulting
expression is
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where �D, XS and d�D/d� are defined by
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As seen from Eq. (7), the direct contribution of the scattering
is a screening version of Eq. (2). The first summation operator in
(7) accounts for each atomic contribution, reduced by a si factor,
whereas the second one represents the reduced interference terms.

We should note that applying the AR, i.e. ignoring the inte-
gral �interference contributions but including them in the differential
cross section values, Eqs. (6) and (7) can be in conflict. In order to
avoid this contradiction we introduced an additional reducing fac-
tor (�) applied to the positive values of d�interference/d  ̋ in order
to ensure that

∫
d˝(d�interference/d˝) = 0. This additional condition

was called the ‘normalised’ SCAR treatment. Most of the recent
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