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a  b  s  t  r  a  c  t

Dissipative  Particle  Dynamics  (DPD)  is  a commonly  employed  coarse-grained  method  to  model  complex
systems.  Presented  here  is  a  pragmatic  approach  to connect  atomic-scale  information  to  the  meso-scale
interactions  defined  between  the  DPD particles  or beads.  Specifically,  electronic  structure  calculations
were  utilized  for  the calculation  of the  DPD pair-wise  interaction  parameters.  An implicit  treatment  of the
electrostatic  interactions  for  charged  beads  is  introduced.  The  method  is  successfully  applied  to  derive
the  parameters  for a hydrated  perfluorosulfonic  acid ionomer  with  absorbed  vanadium  cations.
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1. Introduction

Dissipative Particle Dynamics (DPD) is a meso-scale simulation
technique that was first introduced by Hoogerbrugge and Koel-
man  [1]. Further developments by Español and Warren included
the stochastic differential equations and conservation of energy
[2,3]. The method describes the system in terms of soft particles,
or beads, whose motion is governed by certain collision rules [4].
The soft particles, or beads, represent groups of atoms or molecules
in the system. The use of simplified potentials and the grouping of
the atoms into particles permit simulations of large systems over
long time-scales that are either impossible or difficult to perform
in all atom methods such as molecular dynamics (MD) [5]. Since
its development, the original formulation of DPD has been success-
fully applied to model a large variety of systems including: block
copolymers [6,7], surfactant solutions [8], bilayer membranes [9],
and ionomers [10–12].

The reliability of DPD simulations depends on the proper
translation of the atomic-scale into the meso-scale interaction
parameters. There have been different methods for the derivation
of the interaction parameters between the various types of beads
in order to link the actual physical system to the fictitious DPD par-
ticles. The most widely used method was introduced by Groot and
Warren through mapping onto Flory–Huggins theory [4]. They used
the Flory–Huggins �-parameter to define the interactions between
different components of the system. The �-parameter may  be
related to the solubility [13] or approximated from mixing energy
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calculations using a Monte Carlo approach [12,14]. However, � is
not available for every substance, and there are cases where the
calculations via mixing energy are not fruitful. For instance, if the
beads contain a net electrostatic charge both the solubility and mix-
ing energy approximations fail to give a suitable value for � and
consequently the interaction parameters. Some authors have set
the parameters based on the nature of the chemical groups that are
lumped into each bead or the phase separation behavior of the sys-
tem [15–17]. This technique requires a thorough understanding of
the materials, specific experimental, and simulation results. Others
started with MD simulations and extracted an effective coarse-
grained potential, requiring the meso-scale simulations to match
the structural data or pair-correlation functions of the atomistic
simulations [18–20].

Groot developed a smeared-charge approach for the treatment
of electrostatic interactions in which the charge is distributed
within a sphere rather than being only on a point [21]. The inclusion
of this long-range interaction increases the computational cost and
violates the basic principle of DPD (that only considers the inter-
actions to be short range). Therefore, it is necessary to provide a
method for defining the interaction parameters that is versatile,
does not rely on the experimental information, and still fits into
the simple original DPD framework to ensure the expected high
computational efficiency. The aim of this letter is to introduce a
parameterization method that is capable of capturing the various
types of interactions including strong electrostatics while preser-
ving the simple form of the DPD potentials and high computational
efficiency of the method.

In the following the overall DPD framework is briefly described
(for a more detailed and complete description of the method the
reader is referred elsewhere [1–4,22]). We  then present a pragmatic
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approach that uses ab initio electronic structure calculations for
the development of the conservative interaction parameters. The
average pairwise potentials derived from these quantum chemi-
cal calculations ensure the perseverance of the original framework.
Finally, the parameterization method is applied to a system of inter-
est, which consists of a hydrated perfluorosulfonic acid ionomer
with absorbed ionic species.

2. DPD framework

The time evolution of the interacting particles is governed by
Newton’s equations of motion that are integrated using a modi-
fied velocity-Verlet algorithm [4]. The dimensionless equations of
motion in the Hamiltonian form are:

dri

dt
= vi,

dvi

dt
= fi (1)

the ri and vi are the position and velocity of the ith particle and fi
is the net force acting on that particle. The net force contains three
non-bonded terms. Bonded terms may  also be included in order to
make the simulation of polymers viable.

fi =
∑
j /=  i

(
FC

ij + FD
ij + FR

ij

)
+ f bonded

i (2)

The first three terms in the summation: FC
ij

, FD
ij

, and FR
ij

conser-
vative, dissipative, and random forces which are the non-bonded
components and are typically formulated as follows:

FC
ij = aij(1 − rij)nij (3)

FD
ij = −�ij(1 − rij)

2(nij.vij)nij (4)

FR
ij = �ij(1 − rij)�ij

1√
�t

nij (5)

These forces are pairwise and in the direction of nij = (ri − rj)/|rij|
which is the unit vector toward the centers of particles i and j. The
cut off distance for all the non-bonded forces is rc, the length-scale,
which is linked to physical units based on the system of study and
degree of coarse-graining. The relative position and velocities are
defined as rij = ri − rj and vij = vi − vj . aij is the interaction parame-
ter between two beads and is material or chemical compositional
specific and therefore must be determined for each system. The
dissipation constant, � ij, and the noise amplitude, �ij, are related

by �ij =
√

�ij2kBT to control the temperature fluctuations as dic-
tated by the fluctuation-dissipation theorem [2]. The dissipation
constant has a typical value of 4.5 [4,12,14]. �ij is a symmetric
Gaussian random number with zero mean and unit variance cho-
sen independently for each pair of interacting particles at each time
step (�t). The last term in Eq. (2) comes from the bonded poten-
tials defined to describe polymeric systems. Beads of a polymer
are usually connected to their nearest neighbor beads by harmonic
springs [4,6]. However, another spring term to describe the second
nearest neighbor beads may  also be added in order to improve the
structural properties of a polymer chain [19,23,24].

In this formulation, the only material parameters to be deter-
mined for the system of interest are the conservative interaction
parameters, aij, and bonded potentials if present. It has been previ-
ously shown that the relative interactions affect the phase behavior
of the system and not the absolute values [25,26]. Recent studies
also underline the use of different like bead interactions for differ-
ent bead types (i.e., aii /= ajj) and its effect on the correct prediction
of phase behavior and local densities [27,28]. Hence, it is important
to find the relative amount of the interactions between all pairs of
beads (either like or unlike) as accurate as possible.

3. Parameterization of the conservative force

The conservative interaction potential is assumed to consist of
two terms in the quadratic form:

UC
ij = UR

ij + Uex
ij =

⎧⎨
⎩

aij

2
(1 − rij)

2, rij < 1

0, rij ≥ 1
(6)

where UR
ij

= aR

2 (1 − rij)
2 and Uex

ij
=

aex
ij
2 (1 − rij)

2 (this implies aij =
aR + aex

ij
). The first term is the reference potential and is related

to the compressibility of a reference material. The second term is
the excess interaction and contains the information regarding the
relative interactions among the beads excess to the reference. The
intention is to reproduce the experimental compressibility of one
pure reference material and then to obtain all the other interactions
(either like or unlike) relative to this reference. The reference bead
is a charge neutral species in the system with known experimental
compressibility. The aR is then obtained by matching the simulated
compressibility of pure reference to that of the experiment, similar
to the remarkable work by Groot and Warren (see Section IV of Ref.
[4]).

The excess energy may  be related to the interaction energy of
the two  beads which can be calculated using electronic structure
calculations.

Uint
ij = U(i+j) − U(i) − U(j) (7)

where Uint
ij

is the interaction energy and is obtained by subtrac-
ting the ab initio calculated electronic energy of the isolated beads
(i.e., U(i) and U(j)) from that of the interacting beads (i.e., U(i+j); the
total electronic energy of a system containing the two  interacting
beads i and j). In order to correctly sample the interaction energy,
U(i+j) should be calculated and averaged over many different spatial
configurations of the two beads. Figure 1 illustrates the six spatial
degrees of freedom that are varied in order to consider all the prob-
able configurations of two  objects in a three dimensional space. By
varying these six geometric parameters, many different configura-
tions are generated and consequently the interaction energies are
fitted to a quadratic function of rij (the distance between the cen-
ters of mass of beads i and j). Overall, the procedure is similar to
the derivation of classical two-body pair potentials from quantum
chemical calculations [29–31]. However, in this case the calcula-
tions are performed on two  large clusters of atoms or molecules (the
selected beads with full atomistic resolution) instead of two atoms

Figure 1. The six degrees of freedom that contribute different configurations to the
two objects (beads). The atomic structures of the beads i and j are arbitrary. The
angles can vary as 0◦ ≤ � ≤ 180◦ and 0◦ ≤ � ≤ 360◦ for each configuration. The lower
limit for the rij is when the beads start to overlap and the upper limit is the cut off
distance rc .
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