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a  b  s  t  r  a  c  t

The  use  of  very  high  order  spatial  discretisation  in digital  simulation  of  electrochemical  experiments
is  assessed,  considering  up  to  asymmetric  8-point  approximations  for the  derivatives.  A  wide  range  of
conditions  are  examined,  including  several  mechanisms  and electrodes  and  potential-step  and  potential-
sweep  experiments.  In  all cases  it is  found  that asymmetric  multi-point  approximations  in combination
with  exponentially  expanding  grids  provides  very  accurate  results  and  with  very  reduced  number  of grid
points  (<15).  Consequently,  the  direct  (‘brute  force’)  resolution  of  the  finite-difference  equation  system  by
standard matrix  techniques  becomes  a competitive  and  more  general  alternative  to specialised  methods
like  the  Thomas  algorithm.
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1. Introduction

Some years ago, Britz [1] wrote a paper entitled ‘Brute Force
Digital Simulation in Electrochemistry’. In that work, the direct res-
olution of the system of equations involved in the finite difference
treatment of digital simulation of electrochemical experiments was
considered and related to some specialised methods such as the
Thomas Algorithm in both its scalar [2,3] and matrix-vector ver-
sions [4].

More recently, some papers were published [5–8] where the
direct discretisation of the mathematical laws governing the mass
transport in electrochemical problems was tackled very efficiently
by using multipoint higher-order approximations to the spatial
derivatives. A special case was found [7] with an asymmetric four-
point formula in an exponentially expanding grid which gives rise
to very good results while enabling the use of very high expansion
factors in the range 1.41–1.55.

In this paper, the value of other higher-order asymmetric mul-
tipoint formulae is assessed. Thus, 5-, 6-, 7- and even 8-point
approximations are considered with only one point on the left-hand
side of the point of the derivative (the so-called (N,2) forms). As will
be demonstrated later, with these multi-point approximations very
accurate results can be obtained with exceptionally high expansion

∗ Corresponding author.
E-mail address: fmortiz@um.es (F. Martínez-Ortiz).

factors (for example, values close to 2 can be appropriate). Thus, the
(N,2) formulae show very interesting features:

(1) As above-mentioned, the (N,2) forms give rise to accurate
results with very high expansions factors in the spatial grid and
without numerical oscillations, in contrast with the behaviour
of other multi-point formulae.

(2) The (N,2) forms are suitable for the application of Thomas-like
algorithms. So, all the methodologies developed around the
three-point formulae are easily extensible here.

(3) The extremely high expansion factors available under these
conditions allow us to cover an extended spatial region with
small interval amplitudes near the electrode surface with very,
very few points in the grid. For example, a dimensionless
distance of 100 (often needed for the simulation of some elec-
trochemical techniques) with a distance of 0.1 for the point
nearest to the electrode can be covered with a 12-point grid.

(4) Dealing with such very small grids, the direct resolution of the
implicit systems of equations resulting from the application of
finite difference methodology by standard procedures is not
only possible, but convenient and very competitive in most
situations.

(5) The resulting computer programs are very simple to code.
In addition, the most tedious to write routines as well as
some example programs are given to make it easier for occa-
sional programmers to write their own programs fitting their
demands.
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2. Some theoretical considerations

2.1. General

The general expression for the approximation to the spatial first
derivatives of the concentration of a given species, j, in a point, i,
using the (N,2) forms in an exponentially expanding grid is given
by
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where i denotes the position in the grid (i = 1, 2, . . .),  h is the first-
interval amplitude, �e is the expansion factor, and the coefficients ˛
and  ̌ are given by analytical expressions independent of the posi-
tion in the grid (some of them can be found in [7]). The distance, x,
at point i, xi, is

xi = h
�e

i − 1
�e − 1

(3)

If we consider Fick’s second law, usually addressed in electro-
chemical problems, for a species, j, in dimensionless form,
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where f is 0, 1 or 2, for planar, cylindrical and spherical electrodes,
respectively, and
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cr∗ (5)
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with cj being the concentration of species j, cr* the bulk concen-
tration of the reference species, t is time and tr an appropriate
reference time. r is the distance to the centre of the electrode
(spherical and cylindrical) and r0 is the electrode radius. For a planar
electrode, x is simply the dimensionless distance from the electrode
surface. Dj is the diffusion coefficient of j.

By applying (1) and (2) to the right-hand side of (4), one obtains
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With a two-point approximation for the left-hand side term in
(4), we have
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where Cj
i

represents the (known) concentration of species j at point

i at the time �, whereas Cj′
i

is the (unknown) concentration of the
same species at the same point but at the time � + ı�.

The combination of (9) and (10) can be given in several ways.
Thus, one can take the known values Cj

i
in (9) giving rise to the

explicit methods (very limited and offering poor results, so, not very

interesting), the unknown values Cj′
i

obtaining the fully implicit

method, the average of Cj
i

and Cj′
i

(the Crank-Nicolson method),
a combination of smaller fully implicit time steps (the extrapola-
tion methods) or a multipoint approximation for (10) obtaining, for
example the BDF (backward differentiation formula). In any case,
the most interesting question for our ‘brute force’ approximation
is to deal with implicit methods. So, in this section the procedure
will be illustrated for the case of the fully implicit (FI) method.

In the context of the FI method, the combination of (9) and (10)
leads to
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For example, with the (6,2) forms Eq. (11) can be re-written in
the most convenient way
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For each participating species in a given process, an equation
equivalent to (13) can be written (exactly the same if all diffu-
sion coefficients are equal and slightly different otherwise [2]) at
each node, i, except for i = 0. The resulting equations, together with
the surface conditions for i = 0 and the assumption that Cj′

i
= Cj∗ =

cj∗/cr∗ for i ≥ iMAX (with iMAX being the last node of the grid placed
at a distance xMAX from the electrode surface), gives rise to a com-
plete system of equations (linear in this case) that can be solved in
different ways.

2.2. The Thomas algorithm

With the standard three-point approximation for the space
derivatives, the Thomas algorithm has been largely used when
semi-infinite conditions hold. Provided that the last point is far
enough from the electrode surface for being unaffected by the per-
turbation at the electrode surface (i.e., Cj′

iMAX
= Cj∗), the backward

substitution in the linear system of equations, the combination
with the surface conditions and the subsequent forward substitu-
tion gives rise to an efficient method to find all the values of Cj′

i
. In

the scalar version, this algorithm is only applicable if the profiles of
all the participant species are uncoupled. This is to say, they are all
independent of each other.

The Thomas algorithm has been extended to asymmetric four-
points approximation (4,2) by Britz and Strutwolf [9], by taking
a ‘post-infinite’ point at iMAX + 1 where the concentration is also
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