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The  present  work  focuses  on the exact  solution  of  the  time  dependent  Schrodinger  equation  involving
two  potentials  coupled  by a Dirac  Delta  potential.  The  problem  involving  the  partial  differential  equations
in two  variables  can  be reduced  to a single  integral  equation  in  Laplace  domain  and  by knowing  the  wave
function  at  the  origin  we  can  derive  the  wave  function  everywhere.  Solutions  for  the  bound  state  and
partly  unbound  state  along  with  propagator  are  derived  for the  first potential.
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1. Introduction

Nonadiabatic transitions due to crossing of potential energy
curves is one of the most effective phenomena involved in differ-
ent type of electronic transitions. It is an interdisciplinary concept
which occurs in various fields of physics, chemistry and biology
[1–3]. Common examples to the processes which involves such kind
of transitions are variety of atomic and molecular processes, chem-
ical reactions and spectroscopic processes. In our earlier published
research [4] we have solved the problem of crossing of two  dia-
batic curves and there is a coupling between the two curves which
is responsible for transitions from one curve to another and gave
an exact model of curve crossing problem. This article explains a
general multi crossing problem which is very important in view
of applications to various practical problems involving chemical
dynamics beyond the diatomic systems. Recently we have pub-
lished our research to deal with the cases where two  potentials
are coupled by any arbitrary interaction [5–11]. Out of all exist-
ing numerical as well as analytical methods the use of Dirac Delta
potentials to model different physical problems has its own  estab-
lished importance. The physical significance of the choice of Dirac
Delta function is that, using Dirac Delta function as a coupling
between two states it is possible to get an exact analytical solution
for any problem which is not possible for any other function [4–8].
The other advantage of Dirac Delta functions is that any arbitrary
coupling which can be any kind of function can be expressed as a
collection of Dirac Delta function and then it can be used to calcu-
late the transition probability [9–11]. All these methods as well as

∗ Corresponding author.
E-mail address: diwakerphysics@gmail.com ( Diwaker).

different applications of Dirac Delta function proved it to be useful
as a analytical solvable model in variety of applications involving
novel concepts of physics and chemistry. In the present work we
developed an alternative approach of study of nonadiabatic tran-
sitions involving time dependent Schroedinger equations for two
state scattering problem coupled by Dirac Delta potential where
the coupling is time independent but can be extended to the time
dependent coupling as well which is in the pipeline.

2. Methodology

We start with the case where two  constant potential as repre-
sented by time dependent Schrodinger equations are coupled to
each other by a time independent coupling. The 1D Schrodinger
equation in this case can be written as

i
∂
∂t

[
�1(x, t)

�2(x, t)

]
=
[

H11 V12

V21 H22

]  [
�1(x, t)

�2(x, t)

]
. (1)

The above equation is equivalent to the following equation

i
∂�1(x, t)

∂t
= H11 �1(x, t) + V12 �2(x, t) (2)

i
∂�2(x, t)

∂t
= H22 �2(x, t) + V21 �1(x, t), (3)

if V12 and V21 is the coupling between the potentials represented
by V12 = V21 = 2k0ı(x), then the above equations reduces to

i
∂�1(x, t)

∂t
= H11 �1(x, t) + 2k0ı(x) �2(x, t) (4)

i
∂�2(x, t)

∂t
= H22 �2(x, t) + 2k0ı(x) �1(x, t), (5)
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taking the Laplace transform of Eq. (4), it can be written as

H11 �̄1(x, s) + 2k0ı(x)�̄2(x, s) = is �̄1(x, s) − i �1(x, 0). (6)

In a similar way Eq. (5) can also be written as

H22 �̄2(x, s) + 2k0ı(x)�̄1(x, s) = is �̄2(x, s) − i �2(x, 0).  (7)

We put wave packet at time t = 0 on the first potential, hence for sec-
ond state in our problem �2(x, 0) = 0, hence above equation reduced
to

H22 �̄2(x, s) + 2k0ı(x)�̄1(x, s) = is �̄2(x, s). (8)

Eq. (8) can be rewritten as

(is − H22) �̄2(x, s) = 2k0ı(x)�̄1(x, s), (9)

or

�̄2(x, s) = (is − H22)−12k0ı(x)�̄1(x, s), (10)

using the value of �̄2(x, s) from above equation, Eq. (6) can be
rewritten as

H11 �̄1(x, s) + 2k2
0ı(x)G0

2(0,  0, s)�̄1(x, s) = is �̄1(x, s) − i �1(x, 0),

(11)

where G0
2(0,  0, s) = 〈xc |(is − H22)−1|xc〉 is the Green’s function for

the second state. Eq. (11) is a single equation in Laplace domain
which has the effect of second state in it, in terms of Green’s func-
tion. We  will now solve Eq. (11) by using a method similar to one
discussed in ref. [12], hence the above equation at the point of cou-
pling can be further reduced to the following two equation given
by

− �
2

2m

∂2

∂x2
= is �̄1(x, s) − i �1(x, 0)

∂�̄1(x, s)
∂x

|x=0+ − ∂�̄1(x, s)
∂x

|x=0− = 2k2
0G0

2(0,  0, s)�̄1(0,  s).

(12)

In order to solve Eq. (12), we should consider the homogeneous
solution in order to satisfy the discontinuity condition at the point
of coupling. Its solution is given by

�̄1(x, s) = �(s) exp(i
√

is|x|)

+ 1

2
√

is

∫
dx′ exp(i

√
is|x − x′|)�1(x′, 0) (13)

where �(s) is an arbitrary function of s. Eq. (13) is the homogeneous
solution of Eq. (12) with a constant �(s)which is to be determined
using boundary conditions. Using the wave function given by Eq.
(13) in Eq. (12), at the point of coupling we get

2i
√

is �(s) = 2k2
0G0

2(0,  0, s)�̄1(0,  s)

or (14)

�(s) = k2
0G0

2(0,  0, s)�̄1(0,  s)

i
√

is

with k0 = −b0 where b0 is a positive real number

(15)

�(s) = b2
0G0

2(0,  0, s)�̄1(0,  s)

i
√

is
. (16)

In the above equation k0 = − b0 is the strength of the coupling
between two states which we will consider as a positive real num-
ber for any numerical calculation. Hence, the wave function can be
written as

�̄1(x, s) = b2
0G0

2(0,  0, s)�̄1(0, s)

i
√
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√
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√
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at point of coupling i.e. x = 0, the above equation reduces to

�̄1(0,  s) = b2
0G0

2(0,  0, s)�̄1(0,  s)

i
√
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√

is

∫
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√
is|x′|)�1(x′, 0) (18)

Eq. (18) is a integral equation in Laplace domain which will deter-
mine the wave function at the point of coupling, so if the wave
function can be determined at the origin then it can be determined
everywhere. It is always preferable to have the solution of above
equation in time domain but since we  formulate this problem and
its solution for any arbitrary potential and for different potentials
we have different analytical expressions for Green’s function so it
is worth to express the solution in Laplace domain instead of time
domain.

2.1. Derivation of the propagator for constant b0

The solution in operator form can also be represented as

�̄1(x, s) =
∫ ∞

−∞
dx′G(x, x′, s)�1(x′, 0) (19)

where G is an propagator. To find the propagator we  will make use
of Eqs. (12) and (18) to find
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2G0
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×
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dx′ exp(i

√
is|x′|�1(x′, 0) (20)

from Eqs. (13) and (21) we get

G(x, x′, s) = −b2
0G0

2(0,  0, s) exp(i
√

is(|x| + |x′|)
2
√

s(
√

s +
√

ib2
0G0

2(0,  0, s)
+ exp(i

√
is|x − x′|)

2
√

is
(21)

further we will see that this propagator is equivalent to one derived
by us in our previous research using Feynman approach [4] and is
presented in next section

2.2. Consistency between derived operator and Green’s function
using Feynman approach

We  start with Eq. (11) given as

H11 �̄1(x, s) + 2k2
0ı(x)G0

2(0,  0, s)�̄1(x, s) = is �̄1(x, s) − i �1(x, 0),

(22)

further this equation can be written as

[−is + H11 − k1ı(x)]�̄1(x, s) = −i�1(x, 0),  (23)
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