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a  b  s  t  r  a  c  t

Analytical  eigensolutions  for  Morse  oscillators  are used  to investigate  quantum  resonance  and  revivals
and  show  how  Morse  anharmonicity  affects  revival  times.  A minimum  semi-classical  Morse  revival  time
Tmin−rev found  by Heller  is  related  to  a complete  quantum  revival  time  Trev using  a  quantum  deviation
ıN parameter  that in turn  relates  Trev to the maximum  quantum  beat  period  Tmax−beat.  Also,  number
theory  of Farey  and Thales-circle  geometry  of Ford  is  shown  to  elegantly  analyze  and  display  frac-
tional  revivals.  Such  quantum  dynamical  analysis  may  have  applications  for spectroscopy  or  quantum
information  processing  and  computing.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Wavepacket dynamics has a long history that has more recently
been accelerated by graphics that exhibit space–time behavior.
Such studies began with revivals in cavity QED simulations by
Eberly [1] and later simulations of molecular rovibronic dynam-
ics [2,3]. Ultrafast laser spectroscopy made it possible to observe
wavepacket resonance and localized periodic motion in exper-
imental situations [4–6] involving AMOP dynamics [6,7]. This
helped reveal new physics and chemistry of ultrafast spectroscopy
[7,8].

Some of this involves symmetry and number theoretic proper-
ties of wavepacket space–time structure, a still largely unexplored
field. The following development is based upon earlier Cn-group
and Farey-sum-tree [9] analysis of quantum rotors [10,11] as cited
by Schleich et al. [12,13] for possible numeric factorizing applica-
tions. That work treated only R(2) rings or 1D infinite-wells but
nevertheless revealed general symmetry properties.

Here Morse oscillators are shown to share Farey-sum revival
structure of R(2) rings or 1D infinite-wells. Moreover, Morse
revivals reveal concise ways to find complete revival times Trev

along with new ways to quantify quantum wavepacket dynamics
using Ford circles [14,15].

The Morse oscillator potential Eq. (1a) is an anharmonic poten-
tial [16] used to describe covalent molecular bonding. Some
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dynamics of Morse states have been studied [17–21] as a model
of vibrational anharmonicity.

VM(x) = D(1 − e−˛x)2 (1a)

Coordinate x is variation of bond from equilibrium where the poten-
tial has its minimum and zero value at x = 0. Coefficient D is bond
dissociation energy and its maximum inflection value at infinite x.
D relates harmonic frequency ωe in Eq. (1b) and anharmonic fre-
quency ω� in Eq. (1c) that gives width parameter ˛. The latter is
related to reduced mass � and anharmonic frequency ω�.

D = ωe2
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McCoy [22] revived interest in exact eigenfunctions and eigen-
values [23] of Morse oscillator used in Eqs. (2) and (3a) below and
allows analysis of its quantum dynamics that may be relevant to
anharmonic dynamics in general.

The Morse oscillator, being anharmonic, has varying spacing
of its energy levels in contrast to uniform (harmonic) spacing. At
high quanta n, energy levels En = �  ωn have low-n spacing �E = �  ωe

compressed for positive anharmonic frequency ω� in Eq. (2).

En = �ωn = �ωe
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Figure 1. The Morse oscillator with a harmonic frequency ωe/2�c = 18 cm−1 and an anharmonic frequency ω�/2�c = 1 cm−1. (a) Each of its stationary eigenstate |�n|2 was
list-plotted on a energy level of eigenvalue En in the potential well (red-color-line), these wave functions are normalized (indicated by the same-height dotted-line). (b) The
wave  packet  *  is propagated along the time steps. (c) The probability density map  of the wave packet | |  as a function of space and time. The double arrows connecting
(b)  and (c) indicate the corresponding time events. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

The corresponding Morse eigenfunctions of the eigenvalues are
given by Eq. (3a) where L2s

n represents a generalized associated
Laguerre polynomial [22].

�n(x) = e
−y(x)

2 y(x)s(n)

√
˛(� − 2n − 1)n!

	(� − n)
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Exponentially scaled y(x) has exponent s(n) as given.

y(x) = �e−˛x (3b)

s(n) = 1
2

(� − 2n − 1) (3c)

The scaling parameter � is as follows:

� = 4D
�ωe

(3d)

Dynamic waves are combinations of eigenfunctions.

 (x, t) =
nmax∑
n=0

cn�n(x)e−i
Ent
� (4)

Here nmax is the highest bound state. Its eigenvalue is nearest to
dissociative limit D. To get maximum beating we assume equal
Fourier coefficients cn = 1 (we do not consider shorter revivals
had by zeroing select cn). For instance, amplitude of beat ωA − ωB

between two states |A〉 and |B〉 is related to the standing-wave-
ratio SWR  = (A − B)/(A + B) of amplitude A and B given to each state.
Clearly, this is maximum at 100% modulation when A = B. However,
having all amplitudes equal is not always desirable particularly
if the result is chaotic. A gradual turn-on and turn-off of a select
range of frequencies may  lead to a more revealing waveform. This
involves the art of band-pass windowing and the Lorentzian or
Gaussian windows are among the best known [11].

A sample Morse oscillator potential shown in Figure 1(a) has a
total of nine stationary bound states (from n = 0 to nmax = 8). The ini-
tial wave packet (Eq. (4) at t = 0) is a sum of these stationary bound
states and evolves as shown in Figure 1(b) ending in its lowest  (x,
T)* (x, T) trace as the initial shape fully revived.

Space–time plots of the norm | (x, t)| in Figure 1(c) show
resonant beat nodes and anti-nodes that outline semi-classical tra-
jectories x(t) corresponding to energy values En ranging from the
lowest ground state E0 up to the highest bound state Enmax .

2. Analysis

An essential part of wave packet dynamics analysis of anhar-
monic systems is to predict if and when exact wave packet revival

might occur. If Trev is a time for a Morse oscillator revival, then Wang
and Heller [21] have shown

Trev = �

ω�
M  (5a)

where M  is an integer. This revealed two  facts about Morse oscilla-
tor dynamics. First, there may  be minimum or fundamental revival
period at

Tmin −rev = �

ω�
(5b)

This is the shortest revival time for Morse oscillator found by
Wang and Heller [21]. Second, any complete revival period is
made of integer numbers of the fundamental period. That is,
any complete quantum revival must contain integer numbers of
semiclassical-trajectory-profile periods (minimum revival period)
which is approximately outlined by a classical particle oscillating
with a frequency of 2ω� in the Morse potential.

For a simple illustration of the relationship between quantum
periods and semiclassical-trajectory-profile periods, consider three
cases of classical particles with corresponding quantum eigenvalue
energies orbiting in a Morse potential as shown in Figure 2(a). Here
the rainbow-shape trajectory of a classical particle with energy E2
has a classical oscillating period T close to the fundamental period
of �/ω�, while a classical trajectory with energy E3 = D is of a particle
barely escaping from its Morse potential well.

The preceding case has a simple revival period formula. More
analysis is required to determine a specific integer M  of Eq. (5a) for
Morse revivals for a given (ωe, ω�).

Beating of waves with nearby frequency plays a key role in
quantum dynamics. The maximum beat period Tmax−beat due to the
closest bound energy level pair in the Morse well is one key to
finding its revival period. A complete revival of |
(x, t)|2 at time
Trev must contain integer numbers of all beat periods including at
least one fundamental time period Tmax−beat for the slowest beat
frequency. This relates it to revival period.

Trev = Tmax −beatN  (6)

Here N  is an integer. The Morse energy level Eq. 2 gives a beat-gap
between neighboring energy.

�E  = En − En−1 = �(ωe − 2ω�n) (7)

The �E  is the minimum for maximum n occurring between the
highest bound quantum numbers nmax and nmax−1. Planck’s relation
E = �  ω gives maximum beat period.

Tmax −beat = 2�
(�ω)min

= 2�
Enmax − Enmax  −1

�  = 2�
ωe − 2ω�nmax

(8)
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