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a  b  s  t  r  a  c  t

To  analyze  vibrational  circular  dichroism  (VCD)  spectra  the  angle  between  the  electric  and  magnetic
dipole  transition  moments  was  introduced  as  robustness  index.  We  demonstrate  that  VCD  for  each  normal
mode can  be  made  robust  by a  suitable  translation  of the  coordinate  system  origin  to  a  robust  point. Normal
modes  differ  in  how  VCD  band  robustness  varies  under  translations  from  these  respective  robust  points.
It is shown  that  variation  in  robustness  of a VCD  band  depends  on a parameter  inversely  proportional  to
the  dissymmetry  factor  g. Thus,  robustness  varies  slowly  for  VCD  bands  with  large  dissymmetry  factors
and  vice  versa.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In 2009 Nicu and Baerends [1] introduced a very simple and
useful concept for analyzing the individual bands in vibrational
circular dichroism (VCD) spectra [2]. They defined robust normal
modes using the angle � formed by the electric and magnetic dipole
transition moment vectors, the dot product of which determines
the rotational strength of the vibrational transition associated with
the normal mode under consideration. Gobi and Magyarfalvi [3]
pointed out that � is not origin independent, owing to the ori-
gin dependent nature of the magnetic dipole transition moments.
Fruitful discussions [4] arose from this consideration and resulted
in a limited adoption of this concept. In a different direction, the
origin independent dissymmetry factors were suggested for iden-
tifying and analyzing the robust regions of VCD spectra [5,6].

Nicu’s robustness concept using the angle � has a remarkable
virtue of simplicity [1,4]. However the origin dependence of this
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angle has not been fully understood. An illuminating example of
the behavior of � for a normal mode of methyloxirane was pre-
sented in Fig. 2 of Gobi and Magyarfalvi [3]. A connection between
the robustness angles and origin independent dissymmetry factors
will be useful to bring these two  different concepts into a unify-
ing scheme for analyzing the VCD spectra [3–5]. In this article we
develop the formulation for origin dependence of robustness angles
and their connection to the dissymmetry factors.

2. Theoretical Formulation

The robustness angle � for the normal mode associated with a
fundamental vibrational transition 0–1 is given by the relation:

cos � = Im( ��01 · �m10)√
( ��01 · ��01)( �m10 · �̃m10)

= ��01 · Im( �m10)√
( ��01 · ��01)( �m10 · �̃m10)

(1)

Herein we  indicate ��01 =
〈

0
∣∣ �̂�

∣∣1〉
and �m10 =

〈
1
∣∣ �̂m

∣∣0〉
(tilde indi-

cates complex conjugate and caret indicates operator). Of course
the definition of the operators is �̂� =

∑
jqĵ�rj and �̂m = 1

2c

∑
j

qj
mj

�̂rj ×
�̂pj (mj is the particle mass). Upon shifting the origin from �O to �O′,
such that �O′ = �O − �T where vector �T points from �O′ to �O,  the posi-
tional vector �rj changes from �rj to �r′

j
= �rj + �T , for a neutral molecule

the electric dipole transition moments is origin independent while
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the magnetic dipole transition moment vector varies as follows
[7,8]:

� �m10 = �m′
10 − �m10 = i

˝

2c
�T × ��01 = i� �̄�T × ��01 (2)

In Eq. (2)  ̋ is in rad/s, and �̄ in cm−1. The modulus of �T is in
cm and all other quantities are in electrostatic units, both types
of dipole moments being in esu cm.  To arrive at Eq. (2) one uses
the fundamental quantum mechanical identity (valid for exact

wavefunctions) [8]:
�̂pj
mj

= − i
�

[̂
�rj, Ĥ

]
and applies it to calculate the

transition moments �m10 =
〈

1
∣∣ �̂m

∣∣0〉
in the new coordinate system.

Since �m10 is purely imaginary, from here on we set �m10 = i �M10,
with �M10 real. Eqs. (1) and (2) have been discussed in the literature
and they are included here mostly for setting the notation we are
working with.

Applying such a generic translation, the robustness angle �
changes to �′. Then the ratio (cos �/cos �′) can be shown (consider
Appendix 1) to be:(

cos �

cos �′

)2

= 1 +
(

˝

2c

)2 (�T × ��01
)

·
(�T × ��01

)
M2

10

+
(

˝

c

) �M10 · �T × ��01

M2
10

(3)

As noted by Gobi and Magyarfalvi and depicted in Fig. 1 of their
paper [4], one can move the origin of coordinate system by a transla-
tion vector �T∗ such that the electric and magnetic dipole transition
vectors be either parallel (� = 0◦) or anti-parallel (� = 180◦). Such
translations are not unique, given that any additional component
‘along’ ��10 does not produce further changes in the angle �; fur-
thermore different �T∗ are found for different vibrations. To formally
rephrase the above, we  may  state that the �T∗ vector we are looking
for is such that the generated � �M10 = � �̄�T × ��10 cancels the com-
ponent of �M10 perpendicular to ��10. Noting that the projection of

any vector �b on to �a  is given as
�b·�a
a2 �a, this perpendicular component

can be expressed as the difference between �M10 and the projection
of �M10 along ��01, i.e.:

� �M10 = −
[

�M10 −
(

��01 · �M10

�01

)( ��01

�01

)]
(4)

�T∗ can be decomposed along three mutually orthogonal axes: one
parallel to ��01, one parallel to the cross product of ��01 and �M10,
and a third one, along which it can be shown that T* has no projec-
tion (see Appendix 2 for the proof of this statement and the next
equation), i.e.:

�T∗ = −k1( ��01 × �M10) + k2 ��01 (5)

By substituting Eq. (5) into Eq. (2) and assuming that � �M10 has
the form of Eq. (4), through the identity �A ×

(�B × �C
)

= �B
(�A · �C

)
−

�C
(�A · �B

)
, we find:

�T∗ = −2c

˝

��01 × �M10

�2
01

+ k2 ��01 = − ��01 × �M10

� �̄�2
01

+ k2 ��01 (6)

where k2 is arbitrary. The magnetic dipole transition moment vec-
tor �M∗

10 in the new origin, resulting from the translation �T∗, is
obtained by Eqs. (2) and (6), which leads to the following result:

�M∗
10 = �M10 +

(
1

�01

)2 ( �M10 × ��01
)

× ��01

= ��01

�2
01

( �M10 · ��01
)

= ��01

(
g

4

)
(7)

The penultimate term may  be obtained by applying once more
the identity for the triple cross product, while in the last term
we made use of the definition of dissymmetry factor g = 4R⁄D =(

�ε⁄ε
)

, R and D being respectively the rotational and dipole

strength.
The translation �T∗ defined by Eq. (6), differing for each normal

mode, defines the robust point i.e. (cos �)2 = 1 and �M∗
10 either par-

allel or antiparallel to ��01 (i.e. cos � equals +1 or −1 respectively).
However, what truly matters to distinguish the behavior of differ-
ent normal modes, is the rapidity by which the robustness angle
changes in the neighborhood of respective robust points.  In fact, a
further translation �t from the robust point gives a cos �′ value such
that in the LHS of Eq. (3) the numerator is 1, the linear term in �̄
drops off ( �M∗

10 is parallel to ��01), and thus one obtains:

(
1

cos �′

)2
= 1 + �2�̄2

(�t × ��01
)2

M∗2
10

(8)

By orienting the z-axis parallel to ��01 and expressing �t as (tx, ty, tz),
we have:

cos �′ = ± 1√
1 + �2

(
t2
x + t2

y

) = ± 1√
1 + 	2

x + 	2
y

(9)

where the parameter � is defined by the equation:

�2 =
(

˝

2c

�01

M∗
10

)2

=
(

� �̄
�01

M∗
10

)2

=
(

4� �̄

g

)2

(10)

which clearly shows that � is translationally invariant. In Eq. (9),
since the sign of cos �′ must be equal to the sign of cos � due to the
invariance of the rotational strength, the ± sign is the rotational
strength sign.

In Figure 1a we plot �′ as function of the two variables (	x, 	y);
in Figure 1b we plot �′ as function of one variable 	 (where 	2 =
	2

x + 	2
y ). The cusp behavior envisioned in the example of Fig. 2 of

Gobi and Magyarfalvi [3] is proved here on mathematical grounds.
The tangent of the cusp at t = 0 is provided by evaluating the first
derivative (d�′/dt)0 which exactly gives ±|�| (see Eq. (9)). Being ±
the sign of the rotational strength we can attribute to � the sign of
the rotational strength itself, that is:

� = ˝

2c

�01

M∗
10

= � �̄
�01

M∗
10

= 4� �̄

g

Not only the parameter � does acquire importance per se, but it
also provides a firm foundation to employ the g factor to judge the
VCD and VA (Vibrational Absorption) spectra [5,6].

To further appreciate the physical meaning of the parameter �,
we report in Table 1 the values for the calculated frequencies, for
the � parameter (as derived by the values of �M∗

10 and �01 in the next
two columns) and for the rotational strengths of all fundamental
vibrational transitions in (R)-methyloxirane. The values of � range
from ca.  7 ◦/Å to ca.  5500◦/Å (these values are calculated on the basis
of Gaussian 09 program [9]. In Figure 2 we plot �′ as function of the
modulus t of the translation vector from the robust point, center-
ing functions at their respective �T∗, for the three selected modes
#6, 20 and 23 (the last normal mode was  discussed by Gobi and
Magyarfalvi [3]), which are characterized by three quite different
� values (7.7, 5529.7 and 396.3 ◦/Å, respectively). The three cusps
are quite different and the most acute one is the one with largest
� (smallest g); the most obtuse is the one with smallest � (largest
g). For the latter, one can state that Nicu’s angle is least affected by
translations. This supports considering either the �-value (small)
or the g-value (large) to trust a VCD band. In Table 1 we report also
the values for �T∗ (in Å) for k2 = 0, starting from the origin defined
in the standard orientation of Gaussian 09 [9] (see Appendix 3).
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