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a  b  s  t  r  a  c  t

Benford’s  law is a  statistical  inference  to  predict  the frequency  of significant  digits  in naturally  occurring
numerical  databases.  In  such  databases  this  law  predicts  a  higher  occurrence  of the digit  1  in  the  most
significant  place  and  decreasing  occurrences  to other  larger  digits.  Although  counter-intuitive  at  first
sight,  Benford’s  law  has  seen  applications  in  a wide  variety  of  fields  like physics,  earth-science,  biology,
finance,  etc. In  this  work,  we have  explored  the use  of  Benford’s  law  for  various  spectroscopic  applications.
Although,  we  use  NMR  signals  as  our  databases,  the  methods  described  here  may  also  be  extended  to  other
spectroscopic  techniques.  In particular,  with  the  help  of Benford  analysis,  we demonstrate  emphasizing
weak  NMR  signals  and  spectral  corrections.  We  also explore  a potential  application  of  Benford  analysis
in  the  image-processing  of  MRI  data.

© 2015  Published  by  Elsevier  B.V.

1. Introduction

Benford’s law is an empirical law, which applies to many of the
naturally occurring numerical datasets [1]. It predicts the probabil-
ity of digits 1–9 being the most significant digit (left-most nonzero
digit of a nonzero number). Naively one expects that the frequency
of digits 1–9 in the most significant place is nearly uniform, unless
the entries in the dataset are biased to one or more digits due to
a constrained range of the entries. On the contrary, Benford’s law
predicts a higher occurrence of the digit ‘1’ in the most significant
place, compared to other higher digits, whose occurrences decrease
progressively. This non-uniform occurrence of digits in the most
significant place was first observed by Simon Newcomb [2] in 1881.
However, Newcomb’s article failed to gain recognition due to a lack
of mathematical structure. This empirical law was rediscovered by
Frank Benford [1] in 1938, who presented it with a mathematical
formulation, which states that in a given dataset, the probability
PB(d) of the most significant digit ‘d’ is given by:

PB(d) = log10

(
1 + 1

d

)
. (1)

This probability distribution, known as Benford’s law, predicts an
occurrence as high as 30.1% for the digit ‘1’ in the most significant
place, whereas a mere 4.6% for the digit 9.

Benford distribution is often attributed to our numbering-
systems (decimal, octal, or hexadecimal) which are linear unlike

∗ Corresponding author.
E-mail address: mahesh.ts@iiserpune.ac.in (T.S. Mahesh).

many natural processes which are geometric progressions [1].
For example, several phenomena such as the Maxwell–Boltzmann
distribution of thermal energy, pH values of solutions, charg-
ing/discharging of capacitor, Newton’s law of cooling, decay of a
radioactive nuclei – all occur in exponents.

In order to provide a simple illustration of Benford’s law, we
consider an exponentially decaying signal. While such signals are
versatile, let us consider a time-domain free-induction decay (FID)
of a single NMR  transition. Figure 1(a) displays such a digitized sig-
nal, and also marks the time-intervals at which digits 1–9 occur in
the most significant place. The percentage of the total occurrence
of each digit is also shown in the figure. Evidently, this distribu-
tion is in excellent agreement with the expression (1). Let us now
consider the corresponding frequency-domain signal which is rou-
tinely used in spectroscopic analysis. Figure 1(b) displays the real
part of the Fourier transform of the time-domain signal shown in
Figure 1(a). Here the distributions of most significant digits indicate
an overall agreement with Benford’s law.

Benford distribution is not limited to only exponential or
Lorentzian functions. Any unconstrained dataset whose entries
range over several orders of magnitude tend to follow Benford’s
law. Such datasets emerge from a plethora of sources ranging from
astrophysical [3], geographical [4], seismographic [5], biological
[6–8], to financial topics [9–11]. Benford’s law has also been applied
to study phase transitions in quantum many-body systems [12,13].
Recently in another study, we had also discussed the possibility of
distinguishing a genuine NMR  spectrum from a simulated one using
Benford analysis [14].

In this article, we explore the use of Benford’s law for various
spectroscopic applications, specifically in NMR. In particular, we
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Figure 1. (a) An exponentially decaying signal and the distribution of various digits
in  the most significant place. (b) Similar distribution for the real part of the Fourier
transform of (a). The numbers above each curve indicate the percentage of the time
duration (or the frequency range) spent by each part of the curve (ignoring parts
with intensities less than 0.1).

present some useful techniques pertaining to spectroscopic peak
detection, phase correction, and baseline correction. Firstly, we
describe the methodology of Benford analysis. Then in the next sec-
tion, we demonstrate three applications in NMR  spectral analysis
(i) emphasizing weak solute peaks which are overridden by strong
solvent peaks in 1D and 2D NMR, (ii) simultaneous correction of
zeroth order and first order phase errors in NMR spectra, and (iii)
a technique for baseline correction. Moreover, we show that the
Benford analysis of an MRI  image might be helpful in highlighting
its key areas. Finally we conclude in the last section.

2. Methodology of Benford analysis

2.1. Benford goodness parameter

We  shall describe here the general procedure adopted for per-
forming Benford analysis. Firstly, the signs of the data entries {xi}
are removed by taking their absolutes. To remove a bias towards
any particular digit(s) arising from a limited data-range [xmin, xmax],
the dataset is rescaled between 0 and 1, by using the transformation
[13]

xi → xi − xmin

xmax − xmin
. (2)

The distribution P(d) of digits d = {1, . . .,  9} in the most significant
place is now extracted. In order to quantify the extent of agree-
ment between the observed distribution P(d) with the expected
distribution PB(d), we define ‘Benford Goodness Parameter’ (BGP)
as [4]

BGP =

⎛
⎝1 −

√√√√ 9∑
d=1

(P(d) − PB(d))2

PB(d)

⎞
⎠ × 100. (3)

An ideal Benford distribution corresponds to a value of BGP = 100,
whereas the datasets encountered in real life may  take lower or
even negative values.

2.2. Dependence on phase, baseline, and noise

Now we describe the dependency of BGP on certain spectral
parameters which form the basis for some interesting applications
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Figure 2. BGP versus (a) phase-error and (b) the baseline-error controlled by the �
parameter.

in spectroscopy: (i) The BGP values are sensitive to the spectral
line-shapes and not to their relative intensities. (ii) As illustrated
in Figure 2(a), the BGP value depends on the phase of the spectral
line. For a given Lorentzian spectral line, maximum BGP  is displayed
when it is perfectly absorptive (�0 = 0). (iii) The BGP value also
depends on the baseline. This fact is illustrated in Figure 2(b). Here
a Lorentzian peak is placed on a Gaussian base line, exp(− �2/�2)
wherein � is the frequency and � is the width parameter. Clearly,
the BGP increases as the baseline becomes flatter.

To study the noise-dependence of BGP values, we recorded a
series of 1H spectra of water with varying signal to noise ratios.
The results are plotted in Figure 3. BGP displays a weak overall
enhancement with the signal to noise ratio. This is expected since
the noise tends to alter the distribution of the Lorentzian function.
Further analysis of the noise dependence has been described in [14].

2.3. Scanning Benford analysis

So far we  have considered only one spectral line, while many
spectral lines are encountered in a typical NMR signal. In such
situations, it is helpful to consider a ‘bin’ formed by a smaller sec-
tion of the data set and compute its BGP. A set of BGP values are
then obtained after systematically moving the bin over the entire
dataset. We  can then plot the BGP values versus the bin centers.
We refer to this procedure as Scanning Benford analysis (SBA). The
mean of the BGP values thus obtained captures the lineshapes at
all parts of the spectrum, and therefore is a measure of an over-
all spectral quality. Since a typical NMR  signal consists of tens of
thousands of data points, each bin can accommodate hundreds of
data points required for an effective Benford analysis. In the case of
a two-dimensional dataset, we  may  consider rectangular bins and
shift them systematically all over the dataset, to obtain a 2D-SBA
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Figure 3. BGP versus signal to noise ratio for 1H spectrum of water.
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