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a  b  s  t  r  a  c  t

Pauling  long  bond  orders  have  previously  been  used  to obtain  qualitative  insight  in  the  transmission
through  nanographenes.  Here  we  show  that  this  long  bond  order,  the  atom–atom  polarizability  (a mea-
sure  for  delocalization)  and the  transmission  probability  are  intimately  linked  and  that  their  relationships
are  valid  for  all  alternant  hydrocarbons.  These  relationships  allow  a simple  rationalization  of  the  transport
properties  of  a variety  of molecules  considered  in  molecular  electronics.  As  an  example,  some  molecular
wires  such  as oligo(p-phenylene)  are  studied,  leading  to a simple  explanation  for  the experimentally
observed  exponential  decay  of the  transmission  probability  with  the  number  of  phenyl  units.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Over the past few years, several simplified models to predict
transmission probability around the Fermi level have been devel-
oped. These models were respectively based on frontier orbitals
[1–3], Kékulé structures [4] or long bond orders [5]. Others have
tried to predict the transmission probability based on electron
delocalization measures [6–9]. In this letter, the mathematical
link between the long bond order model (and equivalently the
Kekulé structure counting model) and a prototype delocaliza-
tion index (the atom–atom polarizability) will be discussed and
both properties will be theoretically connected to the transmis-
sion probability as it was derived in the Source-and-Sink-Potential
(SSP) method [10,11]. With this knowledge, the transport proper-
ties of a wide range of alternant hydrocarbons can be discussed.
Oligo(p-phenylene) chains and its quinodimethane-analogue will
be studied in more detail, further illustrating the power of this long
bond order structure counting method in the rationalization of both
experimental and theoretical findings.

A lot of experimental and theoretical studies have already
been performed on oligo(p-phenylene). When these molecules
are incorporated in an electronic circuit by taking the end-chain
para-carbons as contact atoms, an exponential decay of the
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conductance as a function of the number of phenyl rings at the
Fermi level has been observed [12,6,7,13,14]. It was also predicted
very recently by Mandado and Ramos-Berdullas that the addition
of a methylene carbon atom at each end of oligo(p-phenylene)
(resulting in oligo(pheno)-p-quinodimethane, denoted as pX2 in
the work of Mandado et al.) leads to a much better conduction,
making poly(pheno)-p-quinodimethane an interesting poten-
tial candidate for a highly conducting polymer [6,7]. With the
models at our disposal, we  are able to explain the theoretically
and experimentally observed exponential decay in transmission
for oligo(p-phenylene) [12,6,7,13,14], the reason for the inverse
behavior of oligo(pheno)-p-quinodimethane [6,7] and why  delo-
calization measures can be used for these systems to predict their
transport properties (Figure 1).

2. Methods

First, the link between the (Pauling) long bond order, the
atom–atom polarizability (a prototype measure for delocalization)
and transmission will be established.

The Pauling bond order between two adjacent atoms r and s of
a conjugated carbon system, pp

rs, as introduced by Pauling et al.,
can be defined as the fraction of the resonance structures in which
a double bond is present between those atoms [15,16]. This can
equivalently be expressed in a graph-theoretical way as [17]:

pp
rs = K(G � rs)

K(G)
(1)
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Figure 1. Poly(p-phenylene) (above) and poly(pheno)-p-quinodimethane (below).

where K(G) is the number of Kekulé structures (KS) for graph G cor-
responding to the carbon skeleton of a hydrocarbon and K(G � rs) is
the number of Kekulé structures when the vertices corresponding
to atom r and atom s are deleted from graph G [18,19].

This bond order was then generalized to non-adjacent atoms
by Morikawa et al. and they showed that the long bond order in
graphene correlates nicely with the transmission probability [5].
For nanographenes, a theoretical explanation for this trend was
offered by Fowler et al. [4]. More recently, the same qualitative
valence bond (VB) model was used by Mandado et al. to rational-
ize the improved conductance of oligo(pheno)-p-quinodimethane
compared to oligo(p-phenylene) [6].

It can be shown that the link between all these quantities centers
around the complex function �r,s/�,  where � is the characteristic
polynomial of the Hückel Hamiltonian matrix corresponding to the
considered system and �r,s is the characteristic polynomial of the
same Hückel Hamiltonian matrix when row r and column s are
deleted. It was previously established that this rational function
can be identified with the propagator G(0)

rs between atoms r and
s [20–22]. Coulson et al. derived that the Coulson bond order can
be defined as the integral over the imaginary axis of this function
[23,24]

pc
r,s = − 1

�

∫ ∞

−∞

�r,s(iy)
�(iy)

dy (2)

It was proven by Hosoya et al. that the Pauling bond order can
be identified with this function evaluated at the origin [18,19]

pp
r,s = �r,s(0)

�(0)
(3)

On the other hand, the atom–atom polarizability (the Hückel
equivalent of the linear response function in conceptual density
functional theory (DFT) [25] and a measure for delocalization)
[26,27] can be defined as the integral over the imaginary axis of
the square of this function [23]

�r,s = − 1
�

∫ ∞

−∞

�2
r,s(iy)

�2(iy)
dy (4)

In a previous contribution [9], the authors have shown the link
between �r,s and the expression for the transmission probability
around the Fermi level in the SSP method in the weak interaction
limit, derived by Fowler et al. [10,28,4]

T(0) = 4 ˜̌ 2 �2
r,s(0)

�2(0)
(5)

When the Green’s function approach is taken, exactly the same
expression can be obtained in the limit of weak interaction [29].

As �r,s(0)/�(0) is real (or zero), since all of the coefficients of
the characteristic polynomial of the Hamiltonian matrix are real, it

is evident that for any hydrocarbon for which Kekulé structures can
be drawn, the limiting transmission is proportional to the square of
the Pauling bond order. We  should note that Fowler et al. already
expressed the transmission at the Fermi level without the weak
interaction limit as a non-linear function of the Pauling long-bond
order specifically for benzenoids and nanographenes [4].

Conventionally, the (generalized) Pauling bond order is only
defined for benzenoid graphs. However, it has to be stressed that,
as the relations derived by Hosoya are very general and not limited
to benzenoid molecules, the (generalized) Pauling bond order can
be extended towards any conjugated hydrocarbon that (i) has no
non-bonding molecular orbital (NBMO) (an energy level situated
at the origin), (ii) has a bonding HOMO, (iii) has an anti-bonding
LUMO.

Except for 4n membered rings, every possible even alternant
hydrocarbon for which Kekulé structures can be drawn fulfills these
criteria [19]. The reason why  the Pauling bond order was  never
extended towards for example linear polyenes is quite obvious. As
only one Kekulé structure can be drawn for a linear polyene, the
Pauling bond order for such a system will alternate between 0 and
1, no fractional bond orders will arise. However, when studying
transmission through linear polyenes, this realization allows us to
rationalize for example the results presented recently by Hoffmann
et al. in a non-mathematical way [30]. In that paper, the transport
properties of alternant hydrocarbons are discussed by looking at
the Green’s function matrix elements (G(0)

rs ), where G(0) = − H−1. In
simple Hückel theory, the zeroth order Green’s function matrix
element between atom r and atom s is (as already mentioned)
�r,s(0)/�(0), so the absolute values of the elements in the Green’s
function matrices presented in that paper can be derived merely
by drawing the required structures. We  also would like to note
that the method developed by Ernzerhof et al. for estimating the
zero-voltage conductance of nanographenes is essentially equiv-
alent to the method of the estimation of the conduction through
determination of the (extended) Pauling bond order. Ernzerhof cal-
culates the bond orders for the considered polycyclic rings in a very
elegant way, avoiding the laborious work of drawing all possible
structures of both the original molecule and the contactless states
(the graphs corresponding to the molecule where atoms r and s
have been deleted) [31].

The relationship between the zeroth order Green’s function
(the propagator) and the Pauling bond order is also evident when
considering Ham’s work where a molecular orbital expression for
Pauling bond orders is derived [17]. One of the main steps in his
derivation was  the proof of the following equalities

pp
rs = number of KS having rs as double bond

number of KS
(6)

= H−1
rs = Hrs

det(H)
(7)

where Hrs is the cofactor of the element Hrs of the Hamiltonian
matrix in the Hückel approximation. Eqs. (6) and (7) can be restated
as

pp
rs = K(G � rs)

K(G)
= H−1

rs = G(0)
rs = �r,s(0)

�(0)
(8)

The link between both the transmission probability (see Eq. (5))
as well as the Pauling bond order (see Eq. (8)) and the atom–atom
polarizability (see Eq. (4)) for alternant hydrocarbons can be estab-
lished starting from the proof of the pairing theorem [9]. In the proof
of this theorem [24,32], it is derived that for alternant hydrocar-
bons without non-bonding orbitals, the determinant is either even
or odd, depending on the parity of the number of carbon atoms, n:

�(z) = (−)n�(−z) (9)
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