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a  b  s  t  r  a  c  t

We  show  that  the  coupling  constant  involved  in  the  Heisenberg  exchange  Hamiltonian  is related  to  the
coupling  constant  calculated  in  the  Ising  model  by  a simple  expression  of  the  form  J(Hei) =  J(Ising)/N
where  N is the  average  number  of equivalent  magnetic  sites  per cell  taken  for calculation.  This  relation
is  demonstrated  by  DFT  calculations  on  the crystallographic  geometry  of  MnSb  alloy  in  different  mag-
netic  phases,  and  on  the  optimized  geometries  of polymers  of meta-xylylene  and  the  silicon  substituted
counterparts.
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1. Introduction

It is well-known that the Heisenberg exchange Hamiltonian
serves as the effective spin Hamiltonian for ferromagnetic (FM)
and antiferromagnetic (AFM) solids, though in practice the Hamil-
tonian in Ising approximation is often used for calculations and
to obtain qualitative theoretical guidance [1–3]. It is desirable to
have a clearly defined relationship between the coupling constants
in Heisenberg Hamiltonian and those calculated from Ising Hamil-
tonian, and whenever possible, compare these with the coupling
constants that can be estimated from experiment. This question is
addressed here. A relationship is obtained, and it is illustrated by
exemplary calculations on three systems.

2. Theoretical background

The treatment of ferromagnetism in solids in the absence of
an external magnetic field is generally based on the Heisenberg
effective spin Hamiltonian,

HHei = E0 − 2
site∑

j

axis∑
ε

JH
ε Sj • S

j+̂nε
. (1)

In the above JH
ε is the exchange coupling constant in Heisenberg

model between the neighbouring magnetic sites joined by the unit
vector n̂ε along the crystal axis ε, and Sj is the operator for the
spin angular momentum at site j. The Ising model, often applied to
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metallic or alloy systems [4], relies on a special case of Heisenberg
spin exchange in Eq. (1), with all spins considered as directed along
a specific (z) axis:

HIsing = EIsing
0 − 2

site∑
j

axis∑
ε

JI
ε(Sj)z

(Sj+nε )
z
. (2)

Here JI
ε is the magnetic exchange coupling constant in Ising model

between neighbouring sites along crystal axis ε, and (Sj)z is the
operator for the z-component of spin angular momentum. The
coupling constant JI

ε involves the interaction only between the z-
components of spin, and therefore, differs from JH

ε that is used
in the general exchange Hamiltonian with Si·Sj term. Ising model
has often been used for periodic systems to investigate qualitative
trends in properties [4].

2.1. Coupling constants

Let us write the number of sites as Nsite = NucNmag where Nuc is
the number of unit cells per unit volume and Nmag is the number of
‘equivalent’ magnetic sites per unit cell. The ‘equivalent’ magnetic
sites are sites of same type of atoms in same chemical environment
and carrying the same spin, but they may  appear at different rel-
ative topological positions in the repeating unit as illustrated by
Figure 1.

The total spin operators are given by

Stotal =
site∑

j

Sj, Stot,z =
site∑

j

Sjz. (3)
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Figure 1. (a) Elementary unit cell for MnSb (Nmag = 2); (b) the supercell for MnSb (Nmag = 4); (c) unit cell for silicon substituted 1-D meta-xylylene polymer (Nmag = 2) and (d)
unit  cell for 1-D meta-xylylene polymer (Nmag = 2). Atoms are coloured as follows: Mn  (dark blue), Sb (light green), C (red), Si (purple), and H (green).

The spin state vectors |{mi}〉 where mi varies over all possible eigen-
values of (Si)z for every site i form a complete basis set for the
common eigenstates of S2

total and Stot,z. We  note

Stot,z |{mi}〉 = M|{mi}〉, M =
site∑

j

mj (4)

and

〈{mi}|S2
total|{mi}〉 = Smax(S + 1) + M2 −

site∑
j

m2
j , Smax = NsiteS. (5)

For the FM state, mj = S for every site j so that M = Smax = NsiteS,
and 〈S2

total〉 = Smax(Smax + 1). This also yields the spin per cell
Smax/Nuc = NmagS so that 〈S2〉cell = NmagS(NmagS + 1). For any AFM con-
figuration, however, M = 0 that can correspond to any Stotal (Stotal = 0,
2S, 4S, . . .,  Smax). For any particular AFM arrangement with mj
alternatively varying as S and −S along a particular crystal axis
ε′ while maintaining FM arrangement along all other crystal axes,∑

jm
2
j

= SmaxS so that 〈S2
total〉 = Smax, and similarly 〈S2〉cell = NmagS.

These results are exact.
The total (space-spin) electronic Hamiltonian Hel can be used

to calculate the energy of any state with a particular spin config-
uration under Born–Oppenheimer approximation. This energy can
be equated to the energy of a spin Hamiltonian. As there are zε

nearest neighbours along each direction ε, we  get from the Ising
Hamiltonian

EFM = EIsing
0 − NsiteS2

axis∑
ε

zεJI
ε,

Eε′
AFM = EFM + 2NsiteS2zε′ JI

ε′ .

(6)

where ε is a running index and the AFM spin arrangement is present
along the specific axis ε′.

The energy per cell is written as Ec = E/Nuc such that

Ec,FM = EIsing
c,0 − NmagS2

axis∑
ε

zεJI
ε,

Eε′
c,AFM = Ec,FM + 2NmagS2zε′ JI

ε′ .

(7)

This gives

2zεJI
ε =

Eε
c,AFM − Ec,FM

NmagS2
(8)

for each crystal axis ε.
There arises a problem in the calculation of the Heisenberg cou-

pling constant JH
ε . The spin state M = Smax is necessarily a pure spin

state representing Stotal = Smax, that is, the FM ground state configu-
ration is indeed the exact ground state configuration of the FM solid.
As far as an explicit quantum mechanical calculation is concerned,
the calculated solution for M = 0 is in general a mixture of states with
different values of Stotal as observed earlier after Eq. (5). Anderson
showed that the true AFM ground state in any solid is a harmonic
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