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a  b  s  t  r  a  c  t

The  shift  in  the band-gap  experienced  by CdO is  treated  theoretically  as approximately  the  chemical
potential  minus  the  optical  potential.  These  potentials  are  assumed  to  be dependent  on  the  partial  pres-
sure  of  oxygen  in  the  cadmium  deposition  process  since  the  shift  depends  on  this  pressure.  We  obtain
an  approximate  relationship  for the  electron–hole  scattering  length  from  that  (which  is  established  here
as  main  result)  the chemical  potential  is roughly  null  when  the  CdO  electron  concentration  is maximum,
which  (as  we  will  show)  is  equivalent  to  say  that  the chemical  potential  becomes  approximately  zero  if
the  optical  transmittance  in  CdO  is  maximal.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Nowadays, the role played by cadmium oxide is well-known as
very transparent (in the visible range) semiconductor. Certainly,
as other transparent conducting and semiconducting oxides, CdO
thin films have a number of applications in optoelectronics and, for
example, for electroplating baths, electrodes for storage batteries,
and ceramic glazes. Perhaps the most known application of CdO is
as transparent contact in solar cells and as antireflection coating.
On the other hand, we have to mention that this oxide has been
investigated experimentally with quite satisfactory results [1–12]
and by elaborating successfully theoretical–analytical approaches
[13–17]. But, unfortunately, some works as, for instance, Refs.
[18,19] were clearly erroneous. The shift in the optical band-gap
exhibited by some oxides as, for example, CdO, known in the cur-
rent literature as the Burstein–Moss effect, is directly related to the
subject of the present letter. At room temperature, an energy band-
gap shift from 2.3 eV to 2.7 eV was measured in cadmium oxide [3]
while a shift from 2.40 eV to 2.42 eV was observed [4] as well as from
2.32 eV up to 2.52 eV [1]. The aforementioned shift varies with the
partial pressure of oxygen relative to the growth of CdO crystals
and also changes with temperature.

The partial pressure of oxygen during the deposition process of
cadmium oxide is a key issue in the context of the present letter. It is
well-known that the electrical and optical properties of CdO depend
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strongly on the aforementioned pressure (see, for instance, Refs.
[1,2]). In particular, the dependence on this pressure of the CdO
band-gap shift is really notorious. As a matter of fact, in this letter,
we shall treat (theoretically) the shift in the optical energy band-
gap of CdO by means of a, say, very special model. In this model, the
role of the partial pressure of oxygen acquires a great importance.
We will tackle the shift in question as the approximate differ-
ence between the corresponding chemical-potential energy and
optical-potential energy. In this treatment, the concept of optical
potential arises. This concept, coming from the many-body prob-
lem, is really very significant in several branches of Physics [20–29]
as, for instance, nuclear astrophysics, Bose condensation, superflu-
idity, and superconductivity, but not much has been done upon it.
In particular, the notion of optical potential is manifestly relevant in
Condensed Matter Physics (consider, for example, superconductiv-
ity in solids). Here we will use this concept with success providing
an elegant formulation on the basis of envisaging CdO thin films
as dilute degenerate Fermi gases. In this context, on the basis that
zero chemical potential means that the spatial electron density is
maximum (a fact which we will prove), we will find an approxi-
mate formula for the electron–hole scattering length. In addition,
we will show that, in a first approximation, the above maximum
value corresponds to maximum optical transmittance in the visible
range.

2. Theoretical formulation

The chemical-potential energy of a degenerate dilute Fermi gas
reads � ≈ EF + V where EF denotes Fermi energy and V stands for
optical-potential energy (see, for instance, Refs. [21,25–28]). On the
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other hand, it is well-known that the shift in the optical band-gap
of cadmium oxide (which always is n-type) coincides with its Fermi
energy so this shift, for low absolute temperature, reads within the
quasi-free electron theory:

�Eg(P) = �
2

2m∗
r

[
3�2n(P)

]2/3
(1)

where �  is the reduced Planck constant, P denotes partial pressure of
oxygen, m∗

r is electron–hole reduced effective mass, and n(P) stands
for electron spatial density.

Expression (1) represents the Burstein–Moss effect by which
the apparent band-gap of CdO (a degenerate semiconductor) is
increased as the absorption edge is pushed to higher energies as
a consequence of the fact that all states near the conduction band
are populated (the electron density is larger than the effective den-
sity of states at the conduction-band edge). The effect in question is
enhanced if donor impurities are added to CdO. In this respect, we
wish to note that, in nominally doped semiconductors, the Fermi
level lies between the conduction and valence bands. As the donor
density in CdO is increased, then electrons populate states within
the conduction band, pushing the Fermi level higher in energy. As
a matter of fact, the Fermi level lies in the conduction band if a
given (degenerate) semiconductor is n-type as, for example, cad-
mium oxide. All the states below the Fermi level are occupied and
excitation into these occupied states cannot occur by virtue of the
exclusion principle. The apparent band-gap equals the actual band-
gap plus the Burstein–Moss shift (see, for instance, Ref. [30]) so,
considering an optical transition, it is clear that the minimum pho-
ton energy must be almost equal to the band-gap energy plus the
above shift given that the effective electron mass is much smaller
than the effective hole one [30].

At low absolute temperature, the corresponding optical-
potential energy is:

V(P) = 2��2bn(P)
m∗

r
(2)

where b (which here is constant) designates electron–hole scat-
tering length. Given that, of course, the Coulomb electron–hole
interaction is attractive, then we have that b < 0 (attractive optical
potential).

Eq. (2) arises from the original expression namely V = 2��2bn/m
where m stands for neutron rest-mass. This last expression cor-
responds, in reality, to a pseudo-potential energy relative to
neutron–nucleus interaction [20–29], V and n being functions of
spatial coordinates; generalizing, m is fermion rest-mass. Since
b < 0, then V < 0; let us assume that the integral of V over its spa-
tial domain is finite. By the definition of � and formulas (1) and (2),
then we have that � ≈ Cn2/3 − |b|n (dilute degenerate gas), where
C is a non-negative constant. From this last formula, it follows
that �→ − ∞ as n→ ∞,  that is, the gas collapses [28]. On the other
hand, the expression namely V = 2��2bn/m becomes formula (2)
through a transformation of spatial-coordinate space into P-space.
Formula (2) is applicable to non-relativistic (attractive or repulsive)
neutron–neutron scattering [21,25–28] as well as electron–nuclei
scattering. In the context of neutron–neutron scattering, optical
potential and refractive index may  be derived from the so-called
Born forward scattering amplitude [21,23–28]. On the other hand,
the scattering length (or amplitude) b may  be obtained from con-
crete equations and can have a sign different than the Born length
[21,23–28] so that this difference is really very important to fix
the sign of the optical potential [21,23–28]. To exemplify, we can
mention that neutron–neutron scattering gives rise to large attrac-
tive optical potential in a neutron star, which compresses the star
together with gravitational field [21,23–28]. Within this frame-
work, one regards a neutron gas as a collection of identical particles
which exert a pressure, this pressure being a relevant physical

Table 1
CdO electron concentration versus P.

P n
(Torr) (1019 cm−3)

1 × 10−4 7.3
5  × 10−4 12.5
1  × 10−3 12.7
5  × 10−3 11.3
1  × 10−2 2.0

quantity. As a result, by the exclusion principle, repulsive inter-
action counteracting gravity takes place [21,23–28].

Returning now to Eq. (2), we emphasize that we refer
to electron–hole scattering, which is somewhat similar to
electron–atom scattering (see Refs. [20–29]). Making b ≡ − |b| into
expression (2), it is not hard to see that the chemical-potential
energy of degenerate CdO as a dilute Fermi gas tends to vanish as
n(P) attains its maximum value. From this fact, taking into account
formulas (1) and (2), and making into Eq. (1) the approximation

(3�2)
2/3 ≈ (�3)

2/3 = �2, then it follows:

|b| ≈ �

4
[n(P0)]−1/3 (3)

where P0 is the value of P at which the function n(P) achieves its
maximum value which, of course, is n(P0).

From Ref. [1], Fig. 2, one has that n(P0) ≈ 12.7 × 1019 cm−3, which
replaced into (3), yields

∣∣b∣∣ ≈ 1.5 nm. In Table 1, we  have collected
significant values of n(P) extracted from Ref. [1], Fig. 2.

One has that P0 ≈ 1 × 10−3 Torr, this value being the so-called
optimum partial pressure of oxygen at which the optical transmit-
tance (in the visible region) of CdO is maximum achieving 90% (see
Table 2). As a matter of fact, in Table 2, some experimental values
of transmittance (depending on the partial pressure of oxygen and
denoted by T) in the visible range are given (after Ref. [1]).

We emphasize that from Ref. [1], Fig. 2, it follows that, approxi-
mately, the electron spatial density attains its maximal value at the
optimum oxygen partial pressure (notice that Fig. 2 of Ref. [1] is
referred to logarithmic scale). Consequently, as we have said ear-
lier, zero chemical potential implies (roughly) maximum optical
transmittance in the visible range. On the other hand, by inserting
(3) into (2) and considering expression (1), we  get:

�Eg(P0) ≈ h2

8m∗
r

[n(P0)]2/3 (4)

where of course, h = 2��.
Another interesting issue to be treated is related to regarding

the finite-increment formula:

�Eg =
[

dEg(P)
dP

]
P=P0

�P  (5)

In order to equate (1) with (5), it is clear that the left-hand side
of (1) becomes �Eg instead of the initial �Eg(P) so P on the right-
hand side of (1) becomes a fixed value which, by convenience, is P0.
Also, we take �P  = P1 − P2 such that P2 < P0 < P1. Then, by equating
(1) with (5), one can obtain the first derivative of Eg(P) at P0 in terms

Table 2
CdO visible-range transmittance versus P (after Ref. [1]).

P (Torr) T (%)

2 × 10−4 85
1  × 10−3 90
5  × 10−3 80
1  × 10−2 75
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