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a  b  s  t  r  a  c  t

Vertical  excitation  energies  of linear  cyanine  dyes  are  examined  using  the  spin-flip  time-dependent
density  functional  theory.  The  Hartree–Fock  exchange  (HFX)  plays  an essential  role  in  predicting  the
absorption  spectra,  and the  best  values  are  obtained  by  the  combination  of collinear  approximation  and
hybrid  functionals  with  ∼50% HFX.  The  non-collinear  approach  with  pure  density  functionals  underes-
timates  the  excitation  energy  severely.  The  significant  error is due  to low  excitation  energy  from  the
reference  triplet  to first excited  singlet  state.  The  excitation  energy  decomposition  gives  small  orbital
energy  difference  term  and  large  negative  non-collinear  kernel.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Accurate prediction of excitation energies is of critical impor-
tance not only for designing new molecular materials but for
analyzing the photochemical processes after light absorption. Com-
puting the absorption energies of linear cyanine dyes (Figure 1),
which forms �-conjugation along the chain, is challenging to the-
oretical methods. The observation is surprising because the lowest
excited-state is described as the excitation from the highest occu-
pied molecular orbital (HOMO) to the lowest unoccupied molecular
orbital (LUMO). Several benchmark studies have been reported
using various methodologies including multi-reference pertur-
bation theory, many-body perturbation theory, coupled cluster,
diffusion Monte Carlo (DMC), and density functional theory [1–6].

The linear-response time-dependent density functional theory
(LR-TDDFT) [7] is a promising approach to simulate the exci-
tation energies for large molecules with modest computational
cost. A large number of benchmark studies have been reported to
investigate the performance of LR-TDDFT and to propose new den-
sity functionals [8]. The previous studies on linear cyanine dyes
show the LR-TDDFT method overestimates the excitation energy
[2–4]. Grimme  and Neese found that the double hybrid functional
yields the better result [9]. These authors argued the difference of
electronic correlation between the ground and excited states is par-
tially accounted for by the correlation energy of the second-order
Møller–Plesset perturbation theory (MP2) and the configuration
interaction singles with doubles correction. The notorious charge-
transfer problem that is inherent in the LR-TDDFT is not severe for
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these molecules; the range-separated functional does not improve
the results [10].

This Letter reports the computational study on the excitation
energy of linear cyanine dyes by using the spin-flip TDDFT (SF-
TDDFT) [11–19]. This approach has been successfully applied to
describe the conical intersections of ethylene, butadiene, and the
model chromophore of protonated Schiff base retinal [20–23]. Thus,
it is interesting to examine the accuracy by applying the SF-TDDFT
to linear cyanine dyes. Furthermore, one expects that the SF-TDDFT
can take into account the correlation energy contribution of LUMO
explicitly because the reference triplet state is (HOMO)1(LUMO)1.
Very recently, Filatov and Huix-Rotllant have investigated lin-
ear cyanine dyes using the ensemble DFT, LR-TDDFT, SF-TDDFT
and �SCF (self-consistent field) methods [24]. In the SF-TDDFT
computation, these authors employed exclusively the hybrid func-
tional with ∼50% Hartree–Fock exchange (HFX) in conjunction with
the collinear approximation. This work introduces various func-
tionals including local density approximation (LDA), semi-local
generalized gradient approximation (GGA), hybrid GGA, and meta-
GGA functionals. In addition, a comparison is made between the
collinear and non-collinear approaches implemented in the pro-
gram package GAMESS [25,26]. The latter formulation is general
and applicable to any functionals while the collinear approximation
allows only the hybrid functionals.

2. Method

2.1. Non-collinear SF-TDDFT method

In this work, the non-collinear SF-TDDFT method [12–19]
is developed within the Tamm–Dancoff approximation. The
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Figure 1. Molecular structure of cyanine dyes.

SF-TDDFT employs the triplet state with two unpaired alpha elec-
trons as the reference, and the response states are described by
alpha-to-beta spin-flip excitations. The transition amplitude X and
excitation energy � are obtained by solving the Hermitian matrix
equation:

AX = ˝X  (1)

The coupling matrix A is

Aiā,jb̄ = (εā − εi)ıijıāb̄ + f ncol
iā,jb̄

− cx(ij|āb̄) (2)

As usual, i, j, . . . label the occupied orbitals and a, b, . . . the vir-
tual orbitals. The bar symbol denotes the beta spin. ε is the orbital
energy, and cx is the mixing weight of HFX. Mulliken notation is
adopted for the two-electron integral. The second term of Eq. (2) is
the non-collinear kernel:

f ncol
iā,jb̄

=
∫
dr

(ıExc/ın˛(r)) − (ıExc/ınˇ(r))

n˛(r) − nˇ(r)
 i(r) j(r) ̄a(r) ̄b(r)

(3)

The numerator is the difference between the exchange potential,
and the denominator is the spin density of the reference state, i.e.,
the triplet state with two unpaired alpha electrons.

Shao et al. [11] have developed the collinear approximation by
neglecting the non-collinear kernel (fncol). In this case, only the HFX
term contributes the off-diagonal elements of the coupling matrix.
Thus, one must employ the functionals with a fraction cx of HFX.
Otherwise, the coupling matrix is diagonal and gives the orbital
energy difference as the excitation energy.

For the non-collinear calculations, three approaches are consid-
ered here. The first method (NCOL0) computes Eq. (3) rigorously.
Using the partial integration, Li and Liu [16] evaluate this term as the
second functional derivatives (ı2Exc/ının) and the second deriva-
tives of electron density (∇∇ n). This formulation yields nearly zero
excitation energy for the response (MS = 0) triplet states. The draw-
back is severe numerical instability as pointed out in Ref. [16]. The
second approach (NCOL1) can eliminate the instability entirely by
setting the terms stemming from the density derivative (�n) and
kinetic energy density (�) to be zero

(ıExc/ın˛(r)) − (ıExc/ınˇ(r))

n˛(r) − nˇ(r)

→
[

(∂Exc/∂n˛(r)) − (∂Exc/∂nˇ(r))

n˛(r) − nˇ(r)

]
∇n=�=0

(4)

Note the change from the functional derivative to the density
derivative. Li and Liu call this approximation ALDA0 and show that
this replacement can provide numerically stable results even for
GGA functionals [16]. The last approach (NCOL2) replaces the func-
tional derivative by the derivative with respect to explicit density
but keeps the density derivative and kinetic energy density

(ıExc/ın˛(r)) − (ıExc/ınˇ(r))

n˛(r) − nˇ(r)
→ (∂Exc/∂n˛(r)) − (∂Exc/∂nˇ(r))

n˛(r) − nˇ(r)
(5)

In contrast to NCOL1, this approximation encounters numer-
ical instability when n˛ approaches nˇ. The numerator does not
always converge to zero due to the density derivative and the
kinetic energy density.

2.2. SF-TDDFT excitation energies

The SF-TDDFT excitation energies are calculated using the three
approaches [18,19]. The first method (SF1) computes the energy as
follows:

�ESF1 = ESF(S1) − ESF(S0)

= ˝(S1|T1) − ˝(S0|T1)
(6)

where ˝(S1|T1) denotes the excitation energy from the reference
triplet T1 to singlet S1 state. Similarly, ˝(S0|T1) is the transition
energy from the reference T1 to ground state S0. Both ˝(S0|T1) and
˝(S1|T1) are obtained by the standard SF-TDDFT calculation. The
SF1 method is simple and yields the excitation energy by a single
energy calculation. Moreover, the S0 and S1 states can be treated
on an equal footing.

The second method (NSF2) [18,19] uses the ground-state
Kohn–Sham (KS) DFT energy instead of ESF(S0),

�ENSF2 = ESF(S1) − EKS(S0) (7)

The NSF2 method is intended to correct the closed-shell ground
state on the assumption that the KS-DFT energy gap is more accu-
rate than the SF-TDDFT ˝(S0|T1). Eq. (7), however, may introduce
some bias due to two  different methods employed.

The last method (SF2) [18,19] uses Yamaguchi’s spin projection
formula [27] to eliminate the spin contamination of the S1 state,

�ESF2 = �ENSF2 −
[
˝(S1|T1) − 2˝(S1|T1)

〈S2〉T1
− 〈S2〉S1

]
(8)

where 〈S2〉 is the spin expectation value of Ŝ2 for the unrestricted
KS T1 state or the spin-flipped S1 state.

2.3. Computational details

The developed codes were interfaced with the program package
GAMESS [25,26]. Geometries at the MP2/cc-pVQZ level were taken
from Ref. [4]. The linear cyanine molecules have C2v symmetry,
and the excitation from the ground (A1) to the lowest (B2) singlet
state was  considered. Unrestricted KS-DFT was  used to describe the
reference B2 triplet state, in which two  singly occupied � orbitals
have b1 and a2 symmetries. The functionals examined in this work
are LDA (SVWN [28,29]), semi-local and hybrid GGA (BLYP [30,31],
B3LYP [32–34], BHHLYP [30,31], PBE [35,36], PBE0 [35–37], PBE50
[17]), range-separated CAMB3LYP [38], and meta-GGA (M06 [39],
M06-2X [39], M06-HF [40]). The basis set employed was  TZVP
[41,42], and the deviation of excitation energy is 0.02 eV compared
to the largest basis set (see Table S1 in the Supplementary material).
The numerical integration was  performed using 96 radial points
and 590 Lebedev’s angular grid. The collinear approach requires the
non-zero HFX, and thus pure density functionals are not applicable.
Also, the NCOL0 approach is not available for meta-GGA because
it is difficult to develop the rigorous integration of kinetic energy
density.
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